publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. split_conformal_2024.png
    Split Conformal Prediction and Non-Exchangeable Data
    Roberto I. Oliveira, Paulo Orenstein, Thiago Ramos, and João Vitor Romano
    Journal of Machine Learning Research, 2024
  2. blockboost.png
    BlockBoost: Scalable and Efficient Blocking through Boosting
    Thiago Ramos, Rodrigo Loro Schuller, Alex Akira Okuno, Lucas Nissenbaum, Roberto I Oliveira, and Paulo Orenstein
    In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, 02–04 may 2024
  3. personalizedus.png
    PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification
    Alek Fröhlich, Thiago Ramos, Gustavo Cabello, Isabela Buzatto, Rafael Izbicki, and Daniel Tiezzi
    02–04 may 2024
  4. evolve.png
    Modeling and Predicting Crimes in the City of São Paulo Using Graph Neural Networks
    Waqar Hassan, Marvin Cabral, Thiago Ramos, Antonio Castelo Filho, and Luis Nonato
    In BRACIS 2024 () , May 2024

2023

  1. amnioml.png
    AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification
    Daniel Csillag, Lucas Monteiro Paes, Thiago Ramos, João Vitor Romano, Rodrigo Schuller, Roberto B. Seixas, Roberto I. Oliveira, and Paulo Orenstein
    Proceedings of the AAAI Conference on Artificial Intelligence, Jul 2023

2022

  1. split_conformal_2022.png
    Split Conformal Prediction for Dependent Data
    Roberto I. Oliveira, Paulo Orenstein, Thiago Ramos, and João Vitor Romano
    Jul 2022
  2. exactboost.png
    ExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics
    Daniel Csillag, Carolina Piazza, Thiago Ramos, João Vitor Romano, Roberto I. Oliveira, and Paulo Orenstein
    In Proceedings of The 25th International Conference on Artificial Intelligence and Statistics, 28–30 mar 2022