AmnioML: amniotic fluid segmentation and volume prediction with uncertainty quantification

Thiago Rodrigo Ramos - UFSCar July 2024

Introduction

- This project was conducted during my Ph.D. in Centro PI IMPA
- It was a collaboration with Dasa, IMPA Professors and other students
- **GOAL:** Segmentation and Uncertainty Quantification of amniotic fluid

(SHOW VIDEO)

1. Dataset

Segmented Fetal MRI Exams - Data Acquisition

- 652 segmented fetal MRI exams
 - AF segmented by specialists
- 80% of the subjects with some degree of pathology
- Gestational age between 19 and 38 weeks
 - High variation of AF volumes
- MRI images produced using a 1.5-T scanner
 - TrueFisp image reconstruction protocol
 - **FOV 380 mm**
 - Voxel size ~1 x 1 x 1 mm
 - Acquisition time 0.24 s

Data Storage

List of Files

- Unorganized
- Susceptible to data corruption
- Prone to inconsistencies

Database

- Structured
- Verifiable
- Consistency checks:
 - Repetition
 - Dimension
 - Affine transformations (header)

Data Inconsistencies

• Repetitions

- Multiple segmentations for the same exam
- Repeated pairs of exams and segmentations
- Dimension mismatch
 - Segmentation was cropped and needed re-alignment
- Mismatch of pair exam/segmentation
 - The segmentation didn't correspond to the given exam

From 3D to 2D - Slicing

- 2D models performed better
- To construct an input:
 - Slice exams by planes parallel to the coronal plane
 - Select 3 consecutive slices
 - Normalize by the maximum of the aforementioned selection

-coronal or frontal plane

Picture adapted from https://commons.wikimedia.org/wiki/File:Human_anatomy_planes,_labeled.jpg

Example of Input and Target

Input

Supervised Learning

- Split data in three sets: Train, Validation, Test
- Train (420 exams):
 - Examples used during learning process
 - Used to fit a model
- Validation (120 exams):
 - Provides unbiased evaluation during training process.
 - Used for hyperparameters tuning
 - Used to calculate confidence interval/regions
- Test (112 exams):
 - Used for <u>final</u> model evaluation

Neural Networks

Deep neural network

https://www.ibm.com/cloud/learn/neural-networks

Neural Networks: Architectures

• Fast-SCNN

Fast-SCNN: Fast Semantic Segmentation Network - Rudra P K Poudel et al

Neural Networks: Architectures

• U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation - O. Ronneberger et al

Neural Networks: Architectures

• Small U-Net

https://github.com/shreyaspadhy/UNet-Zoo

3. Evaluation

Dice coefficient

Notation

- y: medical segmentation
- ŷ: algorithm segmentation
- D(y, ŷ): Dice coefficient
 - Higher is better
 - Maximum value: 1
 - Minimum value: 0

Results

Average Dice coefficient and standard deviation across 112 exams (test set)

Model	Soft Dice	BCE	AC+BCE
U-Net	0.908 ± 0.10	0.924 ± 0.06	0.923 ± 0.07
Fast-SCNN	0.871 ± 0.11	0.870 ± 0.08	0.872 ± 0.09
Small U-Net	0.903 ± 0.09	0.911 ± 0.08	0.921 ± 0.08

Results Histogram of best-performing model

Visualization Image

• Magenta

 Region of segmentation correctly located by the algorithm.

Red

• Excessive region produced by algorithm but not in the segmentation.

• Blue

• Region of segmentation not located by the algorithm.

Visualization Video

Magenta

 Region of segmentation correctly located by the algorithm.

Red

• Excessive region produced by algorithm but not in the segmentation.

• Blue

• Region of segmentation not located by the algorithm.

Hard and typical cases

Dice of corresponding exam: ~ 0.54

Dice of corresponding exam: ~ 0.94

Volume

Volume evaluation

Amniotic fluid (mL)	Predicted class			
	Previous	Correct	Following	
0-200	0	5	0	
200 - 400	3	25	0	
400 - 600	2	16	2	
600 - 800	2	11	3	
800 - 1000	2	12	0	
1000 - 1250	3	3	0	
1250 - 1500	1	4	1	
1500 - 2000	0	4	3	
2000 - 3000	0	4	1	
3000 - 4000	0	5	0	

- Even with large number of classes, correct 80% of the time.
- No mistake further than 1 class apart.

4. Uncertainty quantification

Importance of uncertainty quantification

- Point prediction is important but not sufficient for medical goals
- Goal: provide intervals to quantify the certainty of our estimates
 - For volume: "we are 90% sure the true volume is between 2.5 and 2.7L"
 - For shape: "we are 95% sure the true segmentation is inside of this shape"
- We study multiple ways to create such intervals with theoretical guarantees
- This is important because of irreducible uncertainty in the medical segmentation

Volume-predictive intervals What does it looks like?

Shape-predictive regions What does it looks like?

Upper bound

Segmentation

Lower bound

Volume-predictive intervals

Standard

- 1. Choose the interval confidence (p%)
- 2. Calculate the distance between the true volume and the predicted volume
- 3. Choose the interval radius (r) as the number that is bigger than p% of all calculated distances
- Define the confidence interval as the predicted volume ± r

Normalized by volume

- 1. Choose the interval confidence (p%)
- 2. Calculate the percentages of the errors in comparison with the predicted volumes
- Choose the error percentual (error%) as the number that is bigger than p% of all calculated error percentages
- 4. Define the interval radius (r) as error% of the predicted volume
- 5. Define the confidence interval as the predicted volume ± r

Performance of volume-prediction intervals: Interval length

Performance of volume-prediction intervals: Empirical vs nominal confidence

Results of shape-predictive regions: Segmentation prediction

Region in the segmentation and not in the lower bound in blue.

Region in the segmentation and in the lower bound in magenta.

Region in the upper bound and not in the segmentation in red.

Region in the segmentation and in the upper bound in magenta.

Confidence = 90% Leniency = 5%

Performance of shape-predictive regions: How tight is it?

5. AmnioML

AmnioML's graphical user interface

✓ Use CUDA acceleration

Volume Data (Last Run)

Best estimate: 666.63 mL

Confidence interval (90%): 603.68 mL to 777.08 mL

Performance in practice

Conclusion

- U-Net with BCE as loss function is the best model for AF segmentation
 - High dice coefficient (>90%) for the vast majority of subjects
 - Each segmentation takes 5 seconds on a GPU
- Threshold Volume Prediction is the best method to create confidence intervals for AF volume
 - Threshold Volume Prediction build tight confidence intervals, with the length highly correlated with the prediction error, and great confidence generalization.
- The Segmentation Prediction method gives tight confidence regions for the AF shape.
- With these tools, it is possible to automate the segmentation and volume estimation of AF with theoretical guarantees and empirical validation

AmnioML Github Repository