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Introduction

e This project was conducted during my Ph.D. in Centro Pl - IMPA

e [t was a collaboration with Dasa, IMPA Professors and other
students

e GOAL: Segmentation and Uncertainty Quantification of amniotic
fAuid

(SHOW VIDEO)







Segmented Fetal MRI Exams - Data Acquisition

e 652 segmented fetal MRl exams
o AF segmented by specialists
e 80% of the subjects with some degree of pathology
e (Gestational age between 19 and 38 weeks
o High variation of AF volumes
e MRIimages produced using a 1.5-T scanner
o TrueFisp image reconstruction protocol
o FOV 380 mm
o Voxel size ~1x1x1mm

o Acquisition time 0.24 s



Data Storage

List of Files Database
e Unorganized e Structured
e Susceptible to data corruption e \Verifiable
e Prone toinconsistencies e Consistency checks:
o Repetition
o Dimension
o Affine transformations (header)




Data Inconsistencies

e Repetitions

o Multiple segmentations for the same exam

o Repeated pairs of exams and segmentations
e Dimension mismatch

o Segmentation was cropped and needed re-alignment
e Mismatch of pair exam/segmentation

o The segmentation didn't correspond to the given exam




From 3D to 2D - Slicing

coronal or

e 2D models performed better frontal plane

e To construct aninput:
o Slice exams by planes parallel
to the coronal plane
o Select 3 consecutive slices
o Normalize by the maximum of

the aforementioned selection

Picture adapted from https:/commons.wikimedia.org/wiki/File:Human_anatomy_planes,_labeled.jpg



https://commons.wikimedia.org/wiki/File:Human_anatomy_planes,_labeled.jpg

Example of Input and Target

Input

Target




2. Models




Supervised Learning

e Split datain three sets: Train, Validation, Test
e Train (420 exams):
o Examples used during learning process
o Used to fit a model
e Validation (120 exams):
o Provides unbiased evaluation during training process.
o Used for hyperparameters tuning
o Used to calculate confidence interval/regions
e Test (112 exams):

o Used for final model evaluation



Neural Networks

Deep neural network
Input layer Multiple hidden layers Output layer

QLOOO

https:/www.ibm.com/cloud/learn/neural-networks




Neural Networks: Architectures

e [Fast-SCNN

‘Input @ conv2D i DWConv @ DSConv @ Bottleneck g Pyramid Pooling gy Upsample ’Softmax

Learning to Down-sample | Global Feature Extractor Feature Fusion Classifier



https://arxiv.org/search/cs?searchtype=author&query=Poudel%2C+R+P+K

Neural Networks: Architectures

e U-Net
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https://arxiv.org/search/cs?searchtype=author&query=Ronneberger%2C+O
https://arxiv.org/search/cs?searchtype=author&query=Ronneberger%2C+O

Neural Networks: Architectures

e Small U-Net
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3. Evaluation




Dice coefficient

Notation
e Yy: medical segmentation
e V:algorithm segmentation
e D(y, ¥): Dice coefficient
o Higheris better

o Maximum value: 1

o  Minimum value: O




Results

Average Dice coefficient and standard deviation across 112 exams (test set)

Model Soft Dice BCE AC+BCE

U-Net 0.908 £0.10 0.924 =0.06 0.923 £+ 0.07
Fast-SCNN  0.871 £0.11  0.870 = 0.08  0.872 = 0.09
Small U-Net 0.903+=0.09 0.911 £0.08 0.921 == 0.08




Results
Histogram of best-performing model
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Visualization
Image

e Magenta
o Region of segmentation
correctly located by the
algorithm.

e Red

o Excessive region produced
by algorithm but not in the
segmentation.

e Blue

o Region of segmentation not
located by the algorithm.




Visualization
Video

e Magenta
o Region of segmentation
correctly located by the
algorithm.

e Red
o Excessive region produced
by algorithm but not in the
segmentation.

e Blue

o Region of segmentation not
located by the algorithm.



https://docs.google.com/file/d/1NEIqTBGcfXTx60CFIIzPnh_LzuWjzPUz/preview

Hard and typical cases

Dice of corresponding exam: ~ 0.54

Dice of corresponding exam: ~ 0.94




Volume

Actual volume (mL)
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Volume evaluation

Predicted class

Amniotic fluid (mL)
Previous  Correct  Following

0- 200 0 5 0
200 - 400 3 25 0
400 - 600 2 16 2
600 — 800 2 11 3
800 — 1000 2 12 0
1000 — 1250 3 3 0
1250 — 1500 1 4 1
1500 — 2000 0 + 3
2000 — 3000 0 4 1
3000 — 4000 0 5 0

o Even with large number of classes, correct 80% of the time.

o No mistake further than 1 class apart.




4. Uncertainty
quantification




Importance of uncertainty quantification

e Point prediction is important but not sufficient for medical goals
e Goal: provide intervals to quantify the certainty of our estimates

o Forvolume: "we are 90% sure the true volume is between 2.5 and 2.7L"

o For shape: "we are 95% sure the true segmentation is inside of this shape"
e We study multiple ways to create such intervals with theoretical guarantees

e Thisis important because of irreducible uncertainty in the medical segmentation




Volume-predictive intervals
What does it looks like?

Lower bound

Lower bound
80% confidence

True volume

Predicted
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Shape-predictive regions
What does it looks like?

Segmentation




Volume-predictive intervals

Standard

Choose the interval confidence (p% )

Calculate the distance between the
true volume and the predicted volume

Choose the interval radius (r) as the
number that is bigger than p% of all
calculated distances

Define the confidence interval as the
predicted volume * r

Normalized by volume

Choose the interval confidence (p% )

Calculate the percentages of the errors
in comparison with the predicted
volumes

Choose the error percentual (error% )
as the number that is bigger than p%
of all calculated error percentages

Define the interval radius (r) as error%
of the predicted volume

Define the confidence interval as the
predicted volume +r



Performance of volume-prediction intervals:
Interval length
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Performance of volume-prediction intervals:
Empirical vs nominal confidence
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Results of shape-predictive regions:
Segmentation prediction

e Region in the segmentation and [k
in the lower bound in BIUE.
e Region in the segmentation and in

the lower bound in [fiGGCHtE.

e Region in the upper bound and [l
in the segmentation in [l
e Region in the segmentation and in

the upper bound in [fEGEHE.

Confidence = 90%
Leniency = 5%




Performance of shape-predictive regions:
How tight is it?
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5. AmnioML




AmnioML's graphical user interface
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Performance in practice
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Conclusion

e U-Net with BCE as loss function is the best model for AF segmentation
o High dice coefficient (>20%) for the vast majority of subjects
o Each segmentation takes 5 seconds on a GPU

e Threshold Volume Prediction is the best method to create confidence

intervals for AF volume
o Threshold Volume Prediction build tight confidence intervals, with the length
highly correlated with the prediction error, and great confidence
generalization.

e The Segmentation Prediction method gives tight confidence regions for
the AF shape.

e With these tools, it is possible to automate the segmentation and volume
estimation of AF with theoretical guarantees and empirical validation




AmnioML Github Repository




