
Exponential Tilting, Concentration, and Convex Duality

Thiago Ramos

1 Importance Sampling and Exponential Tilting

Suppose we are interested in estimating a rare probability of the form

p = P(X > 10),

where X ∼ N (0, 1), with density

f (x) =
1√
2π

e−x2/2.

A natural Monte Carlo estimator is

p̂MC =
1
n

n

∑
i=1

1{Xi > 10}.

However, this approach fails completely when the event of interest is extremely rare.
For instance, in a simulation with n = 107 samples drawn from N (0, 1), not a single value

exceeded 10, resulting in
p̂MC = 0,

while the true probability is
P(X > 10) = 7.62 × 10−24.

In a simulation with n = 107 samples drawn from N (0, 1), not a single value exceeded 10, leading
to

p̂MC = 0, p = P(X > 10) = 7.62 × 10−24.

The estimator collapses simply because the event {X > 10} is far outside the region where the
standard normal places any noticeable probability mass. To make progress, we must somehow
sample more often from the region that actually contributes to the probability we wish to esti-
mate, while keeping the result unbiased. This is precisely the idea behind importance sampling.

1



The key idea behind importance sampling is simple: if the event of interest is extremely rare
under the original distribution, we can sample from a different distribution where that event
is more likely to occur. We then correct for this change of measure by weighting each sample
appropriately.

Let f (x) denote the density of the original distribution of X, and suppose we want to estimate

p = E f [ h(X) ] =
∫

h(x) f (x) dx,

where h(x) = 1{x > 10}. Direct Monte Carlo estimation uses samples Xi ∼ f and computes

p̂MC =
1
n

n

∑
i=1

h(Xi),

which, as we have seen, is ineffective for rare events.
To improve this, we introduce an alternative density g(x) satisfying g(x) > 0 whenever

h(x) f (x) > 0. By multiplying and dividing the integrand by g(x), we obtain

p =
∫

h(x)
f (x)
g(x)

g(x) dx = Eg

[
h(X)

f (X)

g(X)

]
.

Hence, we can estimate p using samples Xi ∼ g:

p̂IS =
1
n

n

∑
i=1

h(Xi)w(Xi), where w(x) =
f (x)
g(x)

.

The distribution g is called the proposal distribution, and the ratio w(x) is known as the im-
portance weight. Intuitively, g should be chosen so that samples in the region where h(x) is large
(for instance, x > 10) become much more frequent, while the weights w(x) compensate for this
oversampling.

We now return to the problem introduced at the beginning: estimating

p = P(X > 10), X ∼ N (0, 1).
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The previous figure made it clear that this probability is astronomically small, making direct
Monte Carlo estimation infeasible. To overcome this limitation, we can apply the idea of impor-
tance sampling introduced above.

We choose as proposal distribution

g(x) = N (10, 1),

which places most of its probability mass around the region of interest x > 10. Under this new
distribution, the event becomes common, and the estimator

p̂IS =
1
n

n

∑
i=1

1{Xi > 10} f (Xi)

g(Xi)
, Xi ∼ g,

provides a meaningful estimate even for moderate sample sizes.
To assess the effect of this change of measure, we simulate n = 106 samples from g = N (10, 1)

and compute

p̂IS =
1
n

n

∑
i=1

1{Xi > 10} f (Xi)

g(Xi)
, Xi ∼ g,

where f is the density of N (0, 1). Using this approach, we obtain

p̂IS = 7.67 × 10−24, ptrue = 7.62 × 10−24, SE ≈ 2.6 × 10−26.

The example above shows that the efficiency of importance sampling depends crucially on
the choice of the proposal distribution g. If g assigns significant probability mass to the region
where h(x) is large, the variance of the estimator can be dramatically reduced.

A natural question arises: how should we choose g systematically? One elegant answer comes
from the idea of exponential tilting. Instead of choosing g arbitrarily, we construct a whole family
of deformed versions of the original density f by exponential reweighting:

fλ(x) =
eλx f (x)

Z(λ)
, Z(λ) =

∫
eλx f (x) dx.

The normalizing constant Z(λ) is the moment generating function of X under the original distribu-
tion f . Its logarithm,

ψ(λ) = log Z(λ),

is called the log-partition function. The parameter λ controls how much probability mass is shifted
toward the upper or lower tail of the original distribution: positive values of λ tilt the distribution
toward larger values of x, while negative values emphasize smaller ones.

As a concrete example, let us come back to the case X ∼ N (0, 1). Applying the exponential
tilting defined above gives

fλ(x) =
eλx f (x)

Z(λ)
=

1√
2π Z(λ)

e−x2/2+λx.

Completing the square in the exponent,

− x2

2
+ λx = −1

2
(x2 − 2λx) = −1

2
(x − λ)2 +

λ2

2
,
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so that
fλ(x) =

1√
2π

e−(x−λ)2/2.

The normalizing constant is therefore Z(λ) = eλ2/2, and we see that

fλ(x) = N (λ, 1).

Hence, exponential tilting of a standard normal simply shifts its mean by λ, leaving the
variance unchanged. In this sense, our earlier choice of g = N (10, 1) can be interpreted as an
exponential tilting of f = N (0, 1) with parameter λ = 10.

2 Chernoff Bound

The exponential tilting introduced above can also be understood as a change of measure applied
to probabilities themselves. This is, in essence, the same idea we used in the normal example,
where we replaced f = N (0, 1) by its tilted version fλ = N (λ, 1) to make the rare event {X > 10}
typical under the new distribution.

Let X have density f , and define the tilted density

fλ(x) =
eλx f (x)

Z(λ)
, Z(λ) = E f [eλX].

We can then express any probability as an expectation under this new measure:

P(X ≥ a) =
∫

x≥a
f (x) dx =

∫
x≥a

f (x)
fλ(x)

fλ(x) dx = Eλ

[
f (X)

fλ(X)
1{X ≥ a}

]
.

Using the definition of fλ, the likelihood ratio is

f (X)

fλ(X)
= e−λX+ψ(λ),

and therefore

P(X ≥ a) = Eλ

[
e−λX+ψ(λ)1{X ≥ a}

]
= Z(λ)Eλ

[
e−λX1{X ≥ a}

]
.

This identity expresses the probability of a rare event as an expectation under the tilted
measure fλ. In principle, this equality could be used for estimation — one could simulate from
fλ and average the weights e−λX+ψ(λ)1{X ≥ a}, exactly as in importance sampling. However, if
our goal is not to estimate but to bound the probability, we can replace the random weight e−λX

by a deterministic upper bound that holds on the event of interest.
On the event {X ≥ a}, we have e−λX ≤ e−λa. Applying this inequality inside the expectation

gives
P(X ≥ a) ≤ e−λa Eλ[eψ(λ)1{X ≥ a}] = e−λa+ψ(λ) Pλ(X ≥ a).

Since Pλ(X ≥ a) ≤ 1, we finally obtain

P(X ≥ a) ≤ exp
(
− λa + ψ(λ)

)
.
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This step transforms the exact importance sampling identity into a deterministic upper bound
— the Chernoff bound. It shows that the same exponential tilting used for variance reduction in
Monte Carlo estimation also provides a clean analytical way to control rare-event probabilities.

The bound obtained above depends on the parameter λ. Different values of λ correspond to
different tilted distributions fλ, and hence to different changes of measure. To obtain the tightest
bound, we minimize the exponent:

P(X ≥ a) ≤ inf
λ>0

exp
(
− λa + ψ(λ)

)
.

The optimal value λ⋆ satisfies the first-order condition

ψ′(λ⋆) = a.

To understand the condition for the optimal λ⋆, let us compute the derivative of the log-
partition function. Starting from

ψ(λ) = log
∫

eλx f (x) dx,

we differentiate with respect to λ:

ψ′(λ) =

∫
xeλx f (x) dx∫
eλx f (x) dx

.

This expression can be recognized as the mean of X under the tilted density fλ(x) ∝ eλx f (x):

ψ′(λ) = Eλ[X].

Hence, the derivative of the log-partition function coincides with the expected value of X under
the exponential tilting. At the optimal value λ⋆, we have

Eλ[X] = ψ′(λ⋆) = a,

which means that under the optimal tilt, the mean of X equals the threshold a. In probabilistic
terms, this tells us that the distribution fλ⋆ makes the event {X ≥ a} typical — its average
outcome already lies at the boundary of the rare region we are trying to study.

To conclude, let us look at another example. Consider X ∼ Exp(θ) with density

f (x) = θe−θx, x ≥ 0.

We are interested in estimating
p = P(X > a)

for a large threshold a. The moment generating function of X is

Z(λ) = E[eλX] =
θ

θ − λ
, λ < θ,

so that the log-partition function is

ψ(λ) = − log(1 − λ/θ), ψ′(λ) =
1

θ − λ
.
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The tilted density is then
fλ(x) = (θ − λ) e−(θ−λ)x, x ≥ 0,

which is again an exponential distribution, but with a smaller rate parameter θ − λ. As λ in-
creases, the mean 1/(θ − λ) shifts to larger values of X, concentrating probability mass in the
tail.

At the optimal tilt λ⋆, the first-order condition

ψ′(λ⋆) = a

gives 1/(θ − λ⋆) = a, or equivalently

λ⋆ = θ − 1
a

.

Under this tilted distribution, the mean of X is exactly a, meaning that the rare event {X > a}
has become typical.

The Chernoff bound then follows from substituting λ⋆ into

P(X > a) ≤ exp
(
− λa + ψ(λ)

)
,

which yields
P(X > a) ≤ θa e1−θa.

To illustrate these results numerically, consider again the exponential case with θ = 1 and a large
threshold a = 20. We compare three approaches for estimating the probability p = P(X > a):
direct Monte Carlo, importance sampling using the tilted distribution fλ⋆ , and the analytical
Chernoff bound.

The exact probability is
p = e−θa = e−20 ≈ 2.06 × 10−9.

Using 106 simulated samples, the naive Monte Carlo estimator gives

p̂MC = 0,

since no sample exceeds the threshold a = 20; the event is too rare to appear under the original
distribution. In contrast, the importance sampling estimator based on the tilted law fλ⋆ with
λ⋆ = 0.95 yields

p̂IS = 2.05 × 10−9,

essentially matching the true value with negligible variance. For comparison, the Chernoff bound
gives

P(X > a) ≤ 1.12 × 10−7,

a valid but much looser analytical upper bound.
A significant part of the gap between the bound and the true probability comes from the

simplification
Pλ(X ≥ a) ≤ 1.

Under the optimal tilt fλ⋆ , the mean of X is indeed equal to the threshold a, yet a considerable
fraction of the probability mass remains below it.
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In the case of the exponential distribution, the probability of exceeding the threshold can be
computed exactly under the tilted law. For X ∼ Exp(θ) and fλ⋆(x) = (θ − λ⋆)e−(θ−λ⋆)x, the tail
probability under the optimal tilt is

Pλ⋆(X ≥ a) = e−(θ−λ⋆)a = e−(θ−(θ−1/a))a = e−1.

Hence, under the optimal tilting, exactly a fraction e−1 ≈ 0.3679 of the probability mass of fλ⋆ lies
above the threshold a. Incorporating this term allows us to compare directly the corrected and
uncorrected forms in simulation. For θ = 1 and a = 20, the exact probability is e−20 = 2.06× 10−9.
When the correction factor Pλ⋆(X ≥ a) = e−1 is included, the expression

e−1 e1−θa = 4.13 × 10−8

is much closer to the true value than the uncorrected Chernoff bound

e1−θa = 1.12 × 10−7.

This constant correction reflects how much of the tilted mass remains below the threshold.
For asymmetric distributions such as the exponential, this fraction depends on the shape of the
tail—here it is e−1.

3 Variance under Exponential Tilting

We have already seen that the tilted measure fλ makes the region of interest, such as X > a,
typical. The optimal tilt is achieved when ψ′(λ) = a, since ψ′(λ) = Eλ [X] is the mean of X
under the tilted distribution. In other words, the parameter λ shifts the distribution so that its
expectation coincides with the point we want to estimate.

To assess the quality of this reweighting, one natural quantity to study is the variance of the
estimator under the tilted measure. If the tilted distribution remains highly concentrated around
its mean, the importance sampling weights are stable and the estimator is efficient. Conversely,
if the tilted law is too dispersed, the weights fluctuate strongly and the estimator suffers from
high variance. Thus, the concentration of the tilted distribution provides a direct measure of the
quality of the importance sampling estimator.

This concentration is captured by the second derivative of the log-partition. Indeed, starting
from

ψ(λ) = log E
[
eλX
]

,

we obtain

ψ′(λ) =
E
[
XeλX]

E [eλX]
= Eλ [X] ,

which represents the mean of X under the tilted distribution. Differentiating once more,

ψ′′(λ) =
E
[
X2eλX]

E [eλX]
−
(

E
[
XeλX]

E [eλX]

)2

= Eλ

[
X2]− (Eλ [X])2 = Varλ [X] .

Hence, the curvature of the log-partition quantifies how concentrated the tilted measure is
around its mean, and therefore how efficient the importance sampling estimator will be.
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In some cases, this variance can be uniformly bounded for all values of λ. For instance, when
X is a bounded random variable such that X ∈ [a, b], the variance under any tilted measure
satisfies

Varλ [X] ≤ (b − a)2

4
.

Indeed, note that the distance from X to the midpoint of the interval (a, b) is always smaller
than half the length of the interval, that is,

X − a + b
2

≤ b − a
2

.

Let m = a+b
2 . Then

(X − m)2 ≤
(

b − a
2

)2

.

Taking expectations under the tilted law gives

Eλ

[
(X − m)2] ≤ (b − a

2

)2

.

Moreover, since for any constant c

Varλ [X] = min
c∈R

Eλ

[
(X − c)2] ≤ Eλ

[
(X − m)2] ,

we obtain

Varλ [X] ≤
(

b − a
2

)2

,

as claimed. This shows that, for any bounded random variable, the variance under exponential
tilting remains uniformly controlled. In particular, the curvature of the log-partition function—
which determines both the concentration of the tilted law and the stability of the importance
sampling estimator—cannot grow without bound.

Now suppose that X is centered, so that E [X] = 0. Then, by definition,

ψ(0) = log E
[
e0·X

]
= 0, ψ′(0) = E [X] = 0.

By the second-order Taylor expansion of ψ, there exists some θ ∈ (0, λ) such that

ψ(λ) = ψ(0) + ψ′(0)λ +
λ2

2
ψ′′(θ) =

λ2

2
Varθ [X] ≤ λ2

2
sup

θ∈(0,λ)
Varθ [X] .

In particular, knowing how the variance behaves under tilting allows us to control the entire
shape of the log-partition function. If the tilted variance remains uniformly bounded, the cur-
vature of ψ is also bounded, and the exponential moments of X grow at most quadratically in
λ.

In the special case of bounded variables, combining this with the uniform bound on the tilted
variance yields

ψ(λ) ≤ λ2(b − a)2

8
.

This result shows that whenever the variance under exponential tilting is uniformly bounded, the
log-partition function grows at most quadratically in λ. Quadratic growth of the log-partition is
precisely the hallmark of sub-Gaussian behavior. In the next section, we formalize this connection
and show how it allows us to control rare-event probabilities even when the exact log-partition
function is unknown.
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4 Sub-Gaussian Variables and Hoeffding Inequality

Suppose we would like to apply exponential tilting for importance sampling, but the log-partition
function

ψ(λ) = log E[eλX]

is unknown or too difficult to compute exactly. In this case, it is often enough to know an upper
bound on ψ(λ). If we can find a simple function that dominates the true log-partition, we can still
control rare-event probabilities and obtain exponential tail bounds.

For instance, suppose we know that

ψ(λ) ≤ σ2λ2

2
, ∀λ ∈ R.

This means that the exponential moments of X grow no faster than those of a Gaussian random
variable with variance σ2. We then say that X is sub-Gaussian with variance proxy σ2.

Recall that, under exponential tilting, the probability of a rare event can be written as

P(X ≥ a) = Eλ

[
e−λX+ψ(λ)1{X ≥ a}

]
= eψ(λ) Eλ

[
e−λX1{X ≥ a}

]
.

If the exact log-partition function is unknown, we can replace it by any valid upper bound. Using
the sub-Gaussian condition above, the Chernoff argument gives

P(X ≥ a) ≤ inf
λ>0

e−λa+ψ(λ) ≤ inf
λ>0

e−λa+ σ2λ2
2 .

Minimizing the exponent with respect to λ yields λ⋆ = a/σ2, which gives

P(X ≥ a) ≤ exp
(
− a2

2σ2

)
.

Hence, any random variable whose log-partition function is bounded by a quadratic exhibits
Gaussian-type tail decay. Even though we cannot perform exact importance sampling without
knowing the true normalizing constant eψ(λ), the inequality above provides an accurate analytical
estimate of the rare-event probability.

As we have seen in the previous section, bounded random variables satisfy a uniform bound
on the tilted variance, and therefore their log-partition function grows at most quadratically. This
means that any bounded variable is automatically sub-Gaussian, with parameter

σ2 =
(b − a)2

4
.

This observation leads directly to one of the most fundamental results in the theory of concen-
tration inequalities, known as Hoeffding’s lemma, which formalizes this fact and provides explicit
exponential bounds for bounded variables.

Teorema 1 (Hoeffding’s Lemma). Let X be a random variable such that X ∈ [a, b] and E [X] = 0.
Then, for all λ ∈ R,

ψ(λ) = log E
[
eλX
]
≤ λ2(b − a)2

8
.

In particular, X is sub-Gaussian with variance proxy σ2 = (b − a)2/4.
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The Hoeffding lemma immediately implies an exponential tail bound for the sum of inde-
pendent bounded variables.

Teorema 2 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such that Xi ∈
[ai, bi] and E [Xi] = 0 for all i. Then, for any t > 0,

P

(
n

∑
i=1

Xi ≥ t

)
≤ exp

(
− 2t2

∑n
i=1(bi − ai)2

)
.

Proof. By the Hoeffding lemma, each Xi satisfies

E
[
eλXi

]
≤ exp

(
λ2(bi − ai)

2

8

)
.

Since the Xi are independent,

E
[
eλ ∑n

i=1 Xi
]
=

n

∏
i=1

E
[
eλXi

]
≤ exp

(
λ2

8

n

∑
i=1

(bi − ai)
2

)
.

Applying Chernoff’s bound,

P

(
n

∑
i=1

Xi ≥ t

)
≤ inf

λ>0
exp

(
−λt +

λ2

8

n

∑
i=1

(bi − ai)
2

)
.

Minimizing the exponent with respect to λ gives

λ⋆ =
4t

∑n
i=1(bi − ai)2 ,

and substituting this value yields

P

(
n

∑
i=1

Xi ≥ t

)
≤ exp

(
− 2t2

∑n
i=1(bi − ai)2

)
,

which concludes the proof.

This inequality shows that sums of independent bounded random variables exhibit Gaussian-
type concentration: their tails decay as fast as e−ct2

, with a constant determined solely by the
width of the intervals [ai, bi]. In the context of importance sampling, this means that when each
component of the estimator is bounded, the overall estimator remains stable — the effective
variance of the tilted measure cannot explode.

The Hoeffding inequality establishes a general sub-Gaussian bound for sums of bounded
independent random variables. To illustrate how these theoretical results — exponential tilting,
Chernoff bounds, and Hoeffding’s inequality — are related in practice, let us consider a simple
but fundamental example where all of them can be computed explicitly.

As an example, consider a random walk composed of independent Rademacher steps,

Sn =
n

∑
i=1

σi, σi ∈ {−1,+1}, P (σi = ±1) = 1
2 .
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We are interested in the rare event Sn > a.
For each step, the log-partition function is

ψ(λ) = log E
[
eλσi
]
= log(cosh λ),

so for the sum Sn, we have ψn(λ) = n log(cosh λ). The corresponding tilted measure satisfies

Pλ (σi = 1) =
eλ

eλ + e−λ
=

1
1 + e−2λ

, Pλ (σi = −1) =
1

1 + e2λ
.

Under this tilted law, the mean and variance of each step are

Eλ [σi] = tanh λ, Varλ [σi] = 1 − tanh2 λ = sech2λ,

so that
Varλ [Sn] = n sech2λ.

This expression shows that as the tilt parameter λ increases to make the rare event Sn > a
typical (that is, to enforce Eλ [Sn] = n tanh λ = a), the variance of the tilted law decreases
exponentially. Hence, the tilted distribution becomes increasingly concentrated around its mean,
and the importance sampling estimator becomes more stable.

To illustrate this behavior numerically, consider n = 100 and a = 60. For this example, the
exact probability of the event is

P (Sn > a) ≈ 1.35 × 10−10.

A naive Monte Carlo simulation with 2 × 105 samples yields no occurrences of the event (p̂MC =

0). In contrast, importance sampling using the optimal tilt λ⋆ = tanh−1(a/n) gives

p̂IS ≈ 1.34 × 10−10,

essentially matching the true probability. For comparison, the Chernoff bound based on the same
tilt yields

P (Sn > a) ≤ e−λ⋆a+n log(cosh λ⋆) = 4.26 × 10−9.

Finally, applying Hoeffding’s inequality with ai = −1 and bi = 1 gives

P (Sn > a) ≤ exp
(
− a2

2n

)
= 2.76 × 10−8,

a looser but fully general bound that holds for all bounded variables.

5 Why the Exponential Tilt?

When performing importance sampling, one might wonder: why use the exponential tilt instead
of any other distribution with the same mean? After all, many reweightings can satisfy Eg [X] =

a. What makes the exponential tilt special?
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To understand this, we take a short detour into convex duality. Given any convex function
ψ : Rd → R ∪ {+∞}, its convex conjugate (or Fenchel dual) is defined as

ψ∗(y) = sup
x∈Rd

{ ⟨y, x⟩ − ψ(x) }.

This transformation exchanges the roles of x and y, turning linear constraints in the primal space
into smooth functions in the dual space.

A central example of this construction is the log-partition function

ψ(λ) = log E f

[
eλX
]

,

which is convex in λ. Its convex conjugate is obtained by applying the same rule:

ψ∗(a) = sup
λ∈R

{ λa − ψ(λ) }.

We now compute ψ∗(a) explicitly. For any density g absolutely continuous with respect to f
and any λ ∈ R,

ψ(λ) = log E f

[
eλX
]
= log Eg

[
eλX f (X)

g(X)

]
≥ Eg [λX + log f (X)− log g(X)] = λEg [X]−DKL(g∥ f ),

where the inequality follows from Jensen’s inequality. If Eg [X] = a, this yields

DKL(g∥ f ) ≥ λa − ψ(λ) for all λ.

Since this inequality holds for every value of λ, the left-hand side must be greater than or
equal to the largest possible value of the right-hand side. Applying this reasoning gives

DKL(g∥ f ) ≥ sup
λ

{λa − ψ(λ)}.

Because this holds for every g satisfying Eg [X] = a, it also holds for the smallest such value of
the left-hand side, that is,

inf
g:Eg[X]=a

DKL(g∥ f ) ≥ sup
λ

{λa − ψ(λ)} = ψ∗(a).

The maximizer in the definition of the conjugate

ψ∗(a) = sup
λ

{λa − ψ(λ)}

is found by setting the derivative with respect to λ to zero:

d
dλ

(
λa − ψ(λ)

)
= a − ψ′(λ) = a −

E f
[
XeλX]

E f [eλX]
.

This vanishes at the point λ = λa such that

E fλa
[X] = a.
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Substituting this value into the conjugate gives

ψ∗(a) = aλa − ψ(λa).

We can now verify that the same expression also emerges from the Kullback–Leibler divergence:

DKL( fλa∥ f ) = E fλa

[
log

fλa(X)

f (X)

]
= E fλa

[λaX − ψ(λa)] .

Since E fλa
[X] = a, this simplifies to

DKL( fλa∥ f ) = λaa − ψ(λa) = ψ∗(a).

Earlier, we established the inequality

DKL(g∥ f ) ≥ λa − ψ(λ) for all g with Eg [X] = a and all λ,

which implies
inf

g:Eg[X]=a
DKL(g∥ f ) ≥ ψ∗(a).

By exhibiting the specific distribution g = fλa that achieves equality,

DKL( fλa∥ f ) = λaa − ψ(λa) = ψ∗(a),

we see that the inequality is tight, and the exponential tilt fλa attains the infimum:

ψ∗(a) = inf
g:Eg[X]=a

DKL(g∥ f ).

In other words, among all distributions g whose mean equals a, the exponential tilt fλa is the
one closest to f in the sense of Kullback–Leibler divergence. It therefore solves the constrained
optimization problem

min
g:Eg[X]=a

DKL(g∥ f ),

showing that the exponential tilt is not an arbitrary choice, but the optimal one dictated by convex
duality.
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