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6 SUMARIO
IMPORTANTE

Estas notas de aula ainda estdo em construgdo. Diversas partes do texto encontram-se em revisao
e, em particular, as referéncias bibliograficas aos artigos e livros utilizados em sua elaboragao
ainda serdo incluidas nas préximas versdes. O contetido atual deve, portanto, ser considerado
preliminar.

As referéncias principais sdo Blitzstein and Hwang (2014); Ross (2006)
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Um conselho: a importancia de ser ruim antes de ser bom

E natural que, quando comegamos a fazer algo, a gente faca essa coisa muito malfeita ou cheia
de defeitos. Isso é comum em qualquer processo de aprendizagem, e sempre foi assim, desde o
inicio dos tempos.

Quando comecei a programar em Python, muita coisa sobre a linguagem eu aprendi por
conta propria, apesar de ja ter feito alguns cursos basicos em C. Programei de forma amadora
em Python por muitos anos, até que, no doutorado, precisei aprender a programar de forma mais
organizada e profissional. Lembro que, nessa época, um amigo da pés-graduacdo me apresentou
ao "submundo da programacdo". Foi ai que aprendi muito do que sei hoje sobre terminal do
Linux, Git, e foi também quando comecei a usar o Vim.

Uma das coisas que esse amigo me mostrou foi o Pylint, que nada mais é do que um verifi-
cador de bugs e qualidade de c6digo para Python. O Pylint é bem rigoroso na anélise, e ainda
te d4, ao final, uma nota que vai até 10. Nessa fase, apesar de ja ter evoluido bastante, meus
coédigos ainda recebiam notas por volta de 6 ou 7. Resolvi entdo rodar o Pylint nos meus cédigos
antigos pra ter uma nogdo de qudo ruins eles eram — e a nota final foi -900. Pois é, existe um
limite superior para o qudo bem vocé consegue fazer algo, mas aparentemente o fundo do pogo
é infinito.

O que eu queria mostrar com essa histéria é que faz parte do processo de aprendizado ser
ruim no comego e melhorar com o tempo. Falo isso porque, hoje em dia, com o crescimento
dos LLMs, a gente fica tentado a pular essa etapa de errar muito até acertar, e ir direto pra
fase em que escrevemos c6digos limpos, bem comentados, identados e organizados. Mas ndo
se enganem: apesar da aparéncia profissional, depender de LLMs pra escrever tudo atrapalha
justamente essa parte essencial de aprender errando.

Neste curso, varios exercicios envolvem escrever codigos em Python. Meu conselho é: nao
tenham vergonha de errar, de escrever solugdes ruins ou confusas. Isso é absolutamente normal.

Vocés estdo aqui para evoluir — e errar faz parte do processo.
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Capitulo 1

Elementos basicos de probabilidade

1.1 Axiomas da probabilidade

Um espago de probabilidade é uma tupla composta por trés elementos: o espago amostral, o conjunto
de eventos e uma distribuicio de probabilidade:

* Espago amostral (): () é o conjunto de todos os eventos elementares ou resultados possiveis
de um experimento. Por exemplo, ao langar um dado, Q = {1,2,3,4,5,6}.

¢ Conjunto de eventos F: F é uma c-algebra, ou seja, um conjunto de subconjuntos de ()
que contém () e é fechado sob complementagdo e unido enumeravel (e, consequentemente,
também sob interse¢do enumerével). Um exemplo de evento é: “o dado mostra um ntimero

impar”.

* Distribuicdo de probabilidade IP: P é uma fun¢do que associa a cada evento de F um
ntmero em [0,1], tal que P[Q)] = 1, P[@] = 0 e, para eventos mutuamente exclusivos
Aq,..., A, temos:

P[AIU---UA,] = il{’[Ai].
i=1

A distribuicdo de probabilidade discreta associada ao lancamento de um dado justo pode ser
definida como P[A;] =1/6 parai € {1,...,6}, onde A, é o evento “o dado mostra o valor i”.

1.1.1 Probabilidade condicional e independéncia

A probabilidade condicional do evento A dado o evento B é definida como a razdo entre a
probabilidade da intersegdo A N B e a probabilidade de B, desde que IP[B] # 0:

P[AN B]
P[B]

P[A | B] =

Dois eventos A e B sdo ditos independentes quando a probabilidade conjunta IP[A N B] pode ser
fatorada como o produto P[A]PP[B]:

IP[A N B] = P[A]P[B].

9
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De forma equivalente, a independéncia entre A e B pode ser expressa afirmando que P[A | B] =
IP[A], sempre que IP[B] # 0.

Além disso, uma sequéncia de varidveis aleatérias é dita i.i.d. (independentes e identicamente
distribuidas) quando todas as varidveis da sequéncia sio mutuamente independentes e seguem
a mesma distribui¢do de probabilidade.

Seguem algumas propriedades importantes:

PP[AUB] =P[A] +P[B] —P[AN B (regra da soma)
n n
P |JAi| <) PlA] (desigualdade da unido)
i=1 i=1
P[A | B] = Hw (formula de Bayes)

P

A

i=1

=P[A1|P[A2 | Aq]---P (regra da cadeia)

n—1
i=1

Exercicio 1. Prove os resultados acima.

1.2 Varidveis aleatoérias

Uma varidvel aleatéria X é uma fungdo mensuravel X : (3 — R, ou seja, tal que, para qualquer
intervalo I C IR, o conjunto
{we:X(w) eI}

pertence & o-dlgebra de eventos.
No caso discreto, a fungio de massa de probabilidade de X é dada por
x — P[X = x].
Quando a distribuicao de X é absolutamente continua, existe uma fungio densidade de probabilidade
f tal que, para todo a,b € IR,
b
Pla< X <b] = / F(x) dx.
a

A funcdo f é chamada funcio densidade de probabilidade da varidvel aleatéria X. A relagdo entre
a fungdo de distribuicio acumulada F(-) e a densidade f(-) é

F(a) =P{X <a} = /j f(x)dx.

Derivando ambos os lados, obtemos

T F(a) = f(a),
ou seja, a densidade é a derivada da funcado de distribui¢do acumulada.
Uma interpretagdo mais intuitiva de f pode ser obtida observando que, para € > 0 pequeno,

e ate/2

H’(a—z <X<a—|—§> :/a—s/Z f(x)dx ~ ef(a).
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Assim, f(a) quantifica a probabilidade de X assumir valores préximos de a.
Em muitos contextos, o interesse recai ndo apenas sobre varidveis aleatdrias individuais, mas

também sobre o relacionamento entre duas ou mais varidveis. Para descrever a dependéncia

entre X e Y, definimos a fungdo de distribuicdo acumulada conjunta como
F(x,y) =P{X<x,Y <y},

que fornece a probabilidade de X ser menor ou igual a x e, simultaneamente, Y ser menor ou
igual a y.
Se X e Y forem varidveis aleatorias discretas, a fungdo de massa de probabilidade conjunta é

p(x,y) =P{X=xY =y}

Se forem conjuntamente continuas, existe uma fungio densidade de probabilidade conjunta f(x,y) tal
que, para quaisquer conjuntos C,D C R,

P{XcC, YeD}= / F(x,y) dxdy.

xeC,yeD

As variaveis X e Y sdo independentes se, para quaisquer C,D C R,
P{XeC,YeD}=P{XeC}P{Y €D}

De forma intuitiva, isso significa que conhecer o valor de uma das varidveis nao altera a distri-
buigdo da outra.
No caso discreto, X e Y sdo independentes se, e somente se, para todo x, y,

P{X=x Y=y} =P{X=x}P{Y =y}
Se forem conjuntamente continuas, a independéncia é equivalente a

flx,y) = fx(x) fr(y), Yxy,

onde fx e fy sdo as densidades marginais de X e Y, respectivamente.

1.3 Valor esperado

A esperanga ou valor esperado de uma varidvel aleatéria X é denotada por E[X] e, no caso
discreto, é definida como
E[X] =) xP[X =x].
X

Exemplo 1. Se I é uma varidvel aleatéria indicadora do evento A, isto é,

1, se A ocorre,

0, se A ndo ocorre,

entio
E[I] =1-P(A)+0-P(A°) = P(A).

Portanto, a esperanga de uma varidvel indicadora de um evento A é exatamente a probabilidade de que A

ocorra.
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No caso continuo, quando X possui uma fungdo densidade de probabilidade f(x), a espe-

ranga é dada por
E[X] = / xf(x) dx.

Além disso, dado uma func¢do qualquer g, temos que:

E[g(X)] = /Oo g(x)f(x) dx.

—00

Uma propriedade fundamental da esperanca é sua linearidade. Isto é, para quaisquer varié-
veis aleatdrias X e Y e constantes a,b € R, temos:

E[aX + bY| = aE[X] + DE[Y].

1.4 Variancia

A variancia de uma varidvel aleatéria X é denotada por Var[X] e definida como
Var[X] = E[(X — E[X])?].

O desvio padrdo de X é denotado por ox e definido como

ox = 4/ Var[X].

Para qualquer varidvel aleatéria X e qualquer constante a2 € R, as seguintes propriedades
bésicas sdo vélidas:
Var[X] = E[X?] — E[X]%,

Var[aX] = a® Var[X].
Além disso, se X e Y forem independentes, entdo
Var[X + Y| = Var[X] + Var[Y].

Exercicio 2. Prove os resultados anteriores.

1.4.1 Covariancia
A covariancia entre duas variaveis aleatérias X e Y é denotada por Cov(X,Y) e definida por
Cov(X,Y) =E[(X - E[X])(Y - E[Y])].

Exercicio 3. Prove que
Cov(X,Y) =E[XY]-E[X]E]Y].

Dizemos que X e Y sdo ndo correlacionadas quando Cov(X,Y) = 0. Se X e Y forem indepen-
dentes, entdo certamente sdo ndo correlacionadas, mas a reciproca nem sempre é verdadeira.

Exercicio 4. Seja X uniforme no intervalo [—1,1] e seja Y = X?. Mostre que Cov (X,Y) = 0 mas X, Y
ndo sio independentes.
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Observagdo 1. Considere uma varidvel aleatéria continua X centrada em zero, ou seja, E[X] = 0, com
densidade de probabilidade par e definida em um intervalo do tipo (—a,a), com a > 0. Seja Y = g(X)
para uma fungio §. A questio é: para quais fungdes g(X) temos Cov(X, g(X)) = 0?
Sabemos que
Cov(X, g(X)) = B[Xg(X)] — E[X]E[g(X)].

Como E[X] = 0, segue que Cov(X, g(X)) = E[Xg(X)]. Denotando a densidade de X por f(x), temos

Cov(X,8(X)) = [ xg(x)f(x)dx.

Uma maneira de garantir que Cov(X,g(X)) = 0 ¢ exigir que g(x) seja uma fungio par. Assim,
xg(x) f(x) serd uma fungio impar e a integral em (—a,a) se anulard, ou seja,

/a xg(x)f(x)dx = 0.

—a

Portanto, Cov(X, f(X)) = 0e como Y = g(X), teremos que ambas sdo dependentes.
Dessa forma, podemos concluir que a distribuigio precisa de X ndo afeta a condigdo, desde que p(x)
seja simétrica em torno da origem. Qualquer fungio par f(-) satisfard Cov(X, f(X)) = 0.

A covaridncia é uma forma bilinear simétrica e semi-definida positiva, com as seguintes pro-
priedades:

* Simetria: Cov(X,Y) = Cov(Y, X) para quaisquer varidveis X e Y.

e Bilinearidade: Cov(X + X', Y) = Cov(X,Y) + Cov(X',Y) e Cov(aX,Y) = aCov(X,Y) para
qualquer a € R.

e Semi-definida positiva: Cov(X, X) = Var[X] > 0 para qualquer variavel X.

Além disso, vale a desigualdade de Cauchy-Schwarz, que afirma que para varidveis X e Y

|Cov(X,Y)| < 4/Var[X] Var[Y].

Perceba a semelhanca do resultado acima com a desigualdade de Cauchy-Schwarz!

com variancia finita,

Exercicio 5. Prove os resultados acima.

A matriz de covariancia de um vetor de varidveis aleatérias X = (X, ..., Xp) é a matriz em
R"*" denotada por C(X) e definida por

C(X) =E [(x- E[X])(X —E[X])T} .

Portanto, C(X) é a matriz cujos elementos sdo Cov(X;, X;). Além disso, é imediato mostrar
que
C(X) = E[XX"] - E[X]E[X]".
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1.5 Desigualdades basicas de concentracao

Nesta secdo, apresentamos duas desigualdades fundamentais que estabelecem limites superiores
para a probabilidade de uma varidvel aleatéria assumir valores distantes de sua média. Tais
resultados sdo amplamente utilizados em probabilidade, estatistica e teoria da informacao para
analisar o comportamento de caudas de distribuigdes.

A primeira delas é a Desigualdade de Markov, que fornece um limite simples para varidveis

aleatérias ndo-negativas em fungdo apenas de sua esperanca.

Teorema 1 (Desigualdade de Markov). Seja X uma varidvel aleatéria ndo-negativa (X > 0 quase
certamente) com valor esperado [E[X] < oo. Entdo, para todo t > 0, temos:
E[X]

P(Xzt) <=

Exercicio 6. Prove a desigualdade de Markov. Dica: use o fato de que 3 > T{x > t}.
A préoxima desigualdade é um refinamento da anterior. Conhecida como Desigualdade de

Chebyshev, ela aplica a desigualdade de Markov a varidvel aleatéria (X — u)? e relaciona o desvio
da média com a variadncia da distribuicdo.

Teorema 2 (Desigualdade de Chebyshev). Seja X uma varidvel aleatéria com valor esperado y = E[X]
e varidncia finita Var(X) = 0. Entdo, para todo € > 0, vale:

N

a

P(X—p 2 ) < 5.

Exercicio 7. Prove a desigualdade de Chebyshev a partir da desigqualdade de Markov aplicada a (X — u)?.

1.6 Teoremas assintoticos

Em muitas aplicagdes de probabilidade e estatistica, estamos interessados no comportamento de
sequéncias de variaveis aleatérias quando o ndmero de observacdes tende ao infinito. Os teoremas
assintdticos fornecem resultados fundamentais que descrevem como certos estimadores ou somas
de varidveis aleatérias se comportam no limite, ou seja, quando o tamanho da amostra n cresce

indefinidamente.

Teorema 3 (Lei Fraca dos Grandes Numeros). Seja (X,),eN uma sequéncia de varidveis aleatérias
independentes, todas com a mesma esperanca y e varidncia o> < oo. Definindo a média amostral por

entdo, para qualquer € > 0,
lim P (| X, —p| >¢) =0.

n— 00

Exercicio 8. Prove a Lei Fraca dos Grandes niimeros utilizando a desigualdade de Chebyshev.
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Teorema 4 (Teorema Central do Limite). Seja Xy, ..., X, uma sequéncia de varidveis aleatorias i.i.d.

2

com esperanga y, varidncia o< e momento de ordem 3 finito. Definimos a média amostral como

Entdo,
\/?1021—,”) 4, N(0,1).

Demonstragio. Suponha, sem perda de generalidade, que y = 0 e ¢ = 1. Defina
1 ¢ 1 ¢
An=—7=)Y X; B,=—=)_N;
n \/ﬁ lzzl 1 € n \/ﬁ Zzzl 1

onde N; & N (0,1) independentes de tudo. Note que B, ~ N(0,1) para todo n.
Para provar que A, 4N (0,1), é suficiente mostrar que, para qualquer fungdo de teste f
suave e com crescimento controlado,

E[f(An)] - E[f(B.)] — 0.

Passo 1: Construcdo telescépica. Considere as varidveis intermedidrias

Y = L(Xi+ X+ + Xa),
cl) — LN+ X+ + X)),
c? — L (NU+ N+ Xa + -+ Xa),
Y = L(Ny+ Ny+ -+ Ny)
n NG n)-

Claramente, C( ) = =A,e C( " — = B,.

Assim,
E[f(An)] —E[f(Bx)] = E[f(C")] — E[f(C{")]
—ya
k=1
onde

A= E[F(CFY) — f(c)).
)

Passo 2: Isolando o termo que difere. Entre C,g ) e C( 0 Unico termo diferente é o k-ésimo.

Definamos
DY = L (N + Neoq 0+ Xeg + -+ X,),
) o ck-1)

isto é, a parte comum entre C,(l e Cfl , mas com o k-ésimo termo anulado.

Assim,

ch — p® | N clk=1) _ p® |

X
vl Vi
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Portanto,
_ (k) | X k) |, N
&= B0+ 35) — A0+ 7))

Passo 3: Expansao de Taylor condicional. Fixe D,gk) = d. Aplicando Taylor em torno de d, temos:

2 3
fd+38) = Fl) + Jof (@) + 35 £"(@) + gt (d + 2x),
N2 N}
fa+2) = fla) + 3 @) + 3@ + af O @+ ),
para alguns {x, ¢ entre 0 e Xi/+/n ou N¢/+/n.
Subtraindo,

fad+36) = fld+ ) = Lf(@) (X~ N+ (@) (XF — NB) + Re(d),

onde
Re(d) = g (XRFOd +8x) — N FOd +2n))

Passo 4: Tomando esperanga condicional. Voltamos para

o= o0 +3) (o0 3]

. . .. k
Usando a decomposicdo anterior e condicionando em D,g ), temos:

A= E| £ (D) (X = No)|

il
+E[££"(DY) (X2 - N2)]
+E[Ry].

Agora, como X e N sdo independentes de D,Sk), obtemos:

E[f'(Dy)(Xx — No)] = E[f'(Dy)] - (E[Xi] — E[N{]) =0,
E[f"(Dy)(x} — N)] = E[f"(Dy")] - (E[X}] — E[N?]) = 0.
Portanto, so resta
A = E[Ry].

Passo 5: Controle do resto. Do termo Ry, temos

IR¢| <

1
< 5 (1XcP sup [£9] + [N Psup |F]).

Tomando esperanca,

S (ElX ]+ N Y),

[E[Re]| <
onde C = Lsup|f®].
Somando sobre k,

n
Y A
k=1

<n- S EIXP) EINP) = 0( %) = o

Logo,
E[f(An)] — E[f(Bx)] — 0,
e como B, ~ N(0,1) para todo n, segue que A, N N(0,1). O



Capitulo 2

Variaveis discretas e como simula-las

O ponto de partida do nosso curso serd sempre o mesmo: s6 podemos utilizar varidveis unifor-
mes para gerar todas as demais distribui¢des. Ou seja, assumimos que temos disponivel uma
varidvel aleatéria

U ~ Uniforme(0,1),

e a partir dela construiremos algoritmos para simular outras varidveis.

A propriedade fundamental dessa variavel é:
Pla<U<b)=b—a, 0<a<b<1.

Isto é, a probabilidade de U cair em um subintervalo do intervalo (0,1) é igual ao comprimento

desse subintervalo.

Exercicio 9. Seja U ~ Uniforme(0, 1). Mostre que, para quaisquer niimeros 0 < a < b <1,
Pla<U<b)=b—a.

Para varidveis discretas, essa ideia pode ser usada da seguinte forma: suponha que X assuma

valores x1,x3,..., X, com probabilidades p1, p2, ..., pm, onde
m
pe=P(X=x), pe>0 Y pe=1
k=1

Definimos as probabilidades acumuladas

k
Fk:Zpi/ k:1,...,m.
i=1

Entdo, o algoritmo de simulagao é:
1. Gerar U ~ Uniforme(0,1);
2. Encontrar o menor indice k tal que U < F;
3. Retornar X = xy.

17
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A propriedade IP(a < U < b) = b — a garante que

IP(X = xk) = Pk-

De forma intuitiva, dividimos o intervalo (0,1) em subintervalos consecutivos de compri-
mentos pi. Ao sortearmos U ~ Uniforme(0,1), o valor de X serd aquele correspondente ao
subintervalo no qual U cair. Esse procedimento é conhecido como método da inversdo para varia-
veis discretas.

A Figura 2.1 ilustra esse processo para uma variavel Bernoulli.

0.0 0.2 0.4 0.6 0.8 1.0
U ~ Uniforme(0, 1)

Figura 2.1: Particionamento do intervalo (0, 1) para simular uma variavel Bernoulli com p = 0.7.
Sorteia-se U ~ Uniforme(0, 1); se U cair na regido azul, definimos X = 0, e caso contrério, X = 1.

A mesma ideia se aplica quando o conjunto de valores possiveis de X é infinito (ou muito
grande). Nesse caso, o intervalo (0,1) é particionado em uma sequéncia de subintervalos, cada

um correspondente a um valor de X, como ilustrado na Figura 2.2.

0.2 0.4 0.6 0.8 1.0
U ~ Uniforme(0, 1)

Figura 2.2: Particionamento do intervalo (0,1) para simular uma variavel discreta com suporte
infinito.

O nome método da inversio vem do fato de que a simulacdo utiliza a fungdo de distribuigio
acumulada (CDF) e sua inversa generalizada. Seja X uma varidvel aleatéria com CDF F(x). Entao,

se U ~ Uniforme(0, 1), vale que
X =F YU,

onde a inversa generalizada é definida por
FYu)=min{x:F(x) >u}, 0<u<l.

No caso discreto, isto corresponde exatamente ao passo do algoritmo em que escolhemos o
menor k tal que U < F. Ou seja, sorteamos U, e depois “invertemos” a CDF para recuperar uma
realizagdo de X na sua escala original.
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Funcéo de distribuicdo acumulada (CDF)
Fungéo massa de probabilidade (PMF) com inversa destacada no eixo y

0'00—0.5 0.0 0.5 1.0 15 2.0 25 3.0 35 0'90.5 0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

Esse procedimento pode parecer um pouco abstrato neste momento, ja que a nog¢ao de inversa
de uma fung¢do acumulada fica mais clara quando lidamos com varidveis continuas. Por isso,
retornaremos a esse método mais adiante, ao estudarmos a simulacgao de varidveis continuas via

inversdo. Antes, porém, vale formalizar essa ideia de maneira geral.

Exercicio 10. Seja X uma varidvel aleatéria com fungio de distribuicio acumulada Fx. Considere U ~
Uniforme(0, 1) e defina

Y = F'(U), onde Fx'(u) = min{x : Fx(x) > u}.
Prove que Y tem a mesma distribuicdo que X.

Esse resultado mostra que, a partir de uma varidvel uniforme, podemos simular qualquer
outra distribui¢do usando a CDF e sua inversa generalizada. Com essa ferramenta em maos,
passamos agora ao estudo de algumas distribui¢des discretas fundamentais, que servirdo de

exemplo concreto dessa ideia.

2.1 Variaveis com suporte finito

Comecemos com o caso em que X assume um numero finito de valores xq, xy, ..., X;, cada um
com probabilidade p; = P(X = x;).
Por exemplo, suponha que

p1 =020, p»=015 p3 =025 ps=040.
Uma maneira direta de simular X é gerar U ~ Uniforme(0,1) e aplicar:
* Se U < 0.20, definir X = 1 e pare;
* Se U < 0.35, definir X = 2 e pare;
* Se U < 0.60, definir X = 3 e pare;
¢ Caso contrdrio, definir X = 4.

Embora possamos reordenar os testes para tornar a verificagdo mais eficiente, a ideia central
permanece a mesma: dividir o intervalo (0,1) em partes de comprimentos p; e identificar onde

U caiu.
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Exemplo: suporte finito com probabilidades distintas

X=1 X=2 X=3 X=4
0.0 0.2 0.4 0.6 0.8 1.0
U ~ Uniforme(0, 1)
Exemplo: uniforme discreta em {1, ...,5}
X=1 X=2 X=3 X=4 X=5
0.0 0.2 0.4 0.6 0.8 1.0

U ~ Uniforme(0, 1)

De forma geral, se X é uma variavel com suporte finito S = {x1, x2,..., X}, sua distribui¢do
é completamente determinada pela fungdo de probabilidade

px(xk) = ]P(X = Xk), X € S,

a qual satisfaz

px(k) >0 paratodokeS, Y px(k)=1.
kes

Exemplo 2. Seja S = {x1,x2,...,xx} um conjunto de K valores distintos. Dizemos que X tem distri-
buigdo uniforme discreta em S quando
pX(xi):E, i:1,2,...,K.

Nesse caso, cada valor é igualmente provdvel e temos

K 1
;PX(xi) = Lx~ 1.

K
—

1

Um caso especial é a uniforme discreta nos inteiros 1,2, ...,n, em que

Neste cendrio, o método se torna extremamente simples: basta gerar U ~ Uniforme(0, 1) e definir
X =|nU]+1,

onde | x| indica a parte inteira de x (maior inteiro menor ou igual a x).
De fato, X = j se e somente se j — 1 < nl < j, o que ocorre com probabilidade %. Varidveis
uniformes discretas sdo particularmente importantes em simulagado, pois permitem gerar inteiros

equiprovéaveis de forma extremamente eficiente.

2.2 Bernoulli

A distribuicdo de Bernoulli modela experimentos com dois resultados possiveis, tipicamente
denominados “sucesso” (valor 1) e “fracasso” (valor 0). Dizemos que X ~ Bernoulli(p) se

P(X=1)=p e P(X=0)=1-p,
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onde 0 < p <1 representa a probabilidade de sucesso.
A fungdo de probabilidade (pmf) pode ser escrita de forma compacta como

px(k) =p (1=p)'™* ke{o1}.
As principais caracteristicas dessa distribuigdo sdo:
E[X] =p, Var(X)=p(1-p).

Exercicio 11. Prove as propriedades acima, isto é, calcule a esperanga e a varidncia de uma varidvel
Bernoulli.

No contexto de simulagdo, a Bernoulli é um caso particular da uniforme discreta em {0,1}
com probabilidades 1 — p e p, respectivamente. O algoritmo é simples: sorteamos U ~ Uniforme(0,1)

e definimos

1, selU<p,
X = P

0, caso contrario.

Exercicio 12. Mostre que o procedimento acima gera corretamente uma varidvel Bernoulli, isto é, verifique
queP(X=1)=peP(X=0)=1-p.

2.3 Distribuicao binomial

A distribui¢do binomial modela o nliimero de sucessos em n repetigdes independentes de um
experimento de Bernoulli com probabilidade de sucesso p.

Sejam Xj, Xy, ..., X, varidveis aleatdrias independentes, todas com distribui¢do Bernoulli(p).
Definimos

Nesse caso, dizemos que X ~ Binomial(#, p), cuja funcdo de probabilidade é

P(X =k) = (Z) F1—p)"t, k=01,...,n
As principais propriedades sdo:
E[X] =np, Var(X)=np(1-p).

Exercicio 13. Prove as propriedades acima.

2.3.1 Simulando via Bernoullis

Uma forma simples e direta de simular uma variavel aleatéria binomial é a partir de varidveis de
Bernoulli independentes.
Recorde que se X ~ Binomial(n, p), entdo X pode ser escrito como

M=

Il
—_

X=) B,
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onde By, By, ..., B, sdo varidveis independentes e identicamente distribuidas, cada uma com
B; ~ Bernoulli(p).

Assim, o algoritmo de simulagdo da binomial segue naturalmente:
1. Parai =1,...,n, gerar B; ~ Bernoulli(p);
2. Retornar X =) ; B;.

Em outras palavras, uma varidvel binomial conta o ntiimero de sucessos em n tentativas inde-
pendentes, cada uma com probabilidade de sucesso p. Portanto, simular uma binomial se reduz
a repetir n vezes o procedimento de simulacdo da Bernoulli e somar os resultados.

2.3.2 Simulando via identidade recursiva

Uma alternativa mais eficiente utiliza o método da inversdo, aproveitando a identidade recursiva
da fungdo massa de probabilidade da Binomial.
Se X ~ Binomial(n, p), entdo

n

P(X=i)= <i>pi(1—p)”i, i=0,1,...,n.

Essas probabilidades satisfazem uma relagdo de recorréncia simples. De fato, comecando em

]P(X:i+1):< "

i+1q L \n—i—1
Z-+1>P A=p)" "

1

n _ n! n—i n! _n—i(n
i+1) (+1)!(n—i—1)! i+1i(n—i) i+1\i/)

Substituindo essa relacao,

observamos que

_ Ll N £ W N
P(X_l+1)_i+1<i>p (1-p) .
Reorganizando,
11>(X:i+1)=”_i-L]P(X:i).
i+1 1-p

Assim, conhecendo P(X = 0) = (1 — p)", podemos calcular P(X = 1),P(X = 2),... de
forma recursiva, sem reavaliar coeficientes binomiais nem poténcias.

Isso leva ao seguinte algoritmo de simulagao via inversao:

1. Gerar U ~ Uniforme(0,1);

Ipor exemplo,sen =10,i =6ei+1=7, entdo

100 1004 10! 4
7131 7.6!1-4.31 7 6!-417
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Binomial(n=20, p=0.7) — Inverse vs NumPy (N=100000)

B [nverse-transform PMF
B NumPy PMF (np.random.binomial)

0.200 |

0.175

0.150

0.125}

Empirical PMF
o
=
o
o

o
o
<
8

0.050

0.025}

0.000

2. Inicializar o indice i = 0, a probabilidade atual p; = (1 — p)" e a soma acumulada F = p;;

3. Enquanto U > F, atualizar

n—i . .
Pitv1 = i+1'%m, I« i+1, F « F+pi;

4. Retornar X = i.

Esse procedimento verifica primeiro se X = 0, depois se X = 1, e assim por diante, até
encontrar o valor de X sorteado. Em média, o nimero de passos necessarios é aproximadamente
1+ np, o que pode ser bem mais eficiente do que gerar n varidveis de Bernoulli quando n é
grande.

Exemplo 3. Consideren = 5 e p = 0.3. Temos P(X = 0) = (1 —0.3)°> = 0.16807. Suponha que
geramos U = 0.4. Como U > 0.16807, passamos ao proximo valor:
5-0 03
=107 -0.16807 ~ 0.36015, F = 0.16807 + 0.36015 = 0.52822.
Agora U = 0.4 < F, logo o algoritmo retorna X = 1.
Portanto, neste caso especifico, o sorteio resultou em exatamente um sucesso entre as cinco tentativas.

2.3.3 Aspectos computacionais

A escolha do método para simular varidveis binomiais tem implica¢des diretas em termos de
eficiéncia. Dois fatores fundamentais influenciam o desempenho: o ntiimero de tentativas # e a
probabilidade de sucesso p.

No método da soma de Bernoullis, o custo de cada amostra é proporcional a 1, ja que é
necessario realizar n sorteios independentes. Esse custo ndo depende do valor de p: tanto para
valores pequenos quanto grandes de p, o algoritmo precisa sempre gerar todas as n Bernoullis.

Ja no método da inversdo recursiva, o nimero médio de passos é da ordem de 1 + np, pois o
procedimento acumula probabilidades até ultrapassar o valor sorteado U. Quando p é pequeno,
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o valor tipico da varidvel X também é pequeno, e o algoritmo tende a parar cedo, podendo ser
competitivo em relagdo a soma de Bernoullis. Por outro lado, quando p é moderado ou grande, o
valor esperado np cresce e, com ele, o nimero de passos, tornando a inversao significativamente
mais lenta.

Runtime vs p (=100, N=2000, loop-based methods)
0.12}

0.10

—e— Inverse (loop)
Sum Bernoullis (loop)
0.06 } —==- Scaled 1+np

Wall time (s)

Figura 2.3: Comparacdo de tempo de execugdo (em segundos) entre o método da inversado recur-
siva e a soma de Bernoullis para n = 100 e N = 2000 amostras, variando p.

A Figura 2.3 ilustra essa comparagdo em implementagdes com loops explicitos, para n = 100
e diferentes valores de p. Enquanto o tempo da soma de Bernoullis cresce linearmente apenas
com n e ndo é afetado por p, o tempo do método da inversdo cresce proporcionalmente a np,
aumentando de forma acentuada a medida que p se aproxima de 1. Na prética, bibliotecas como
NumPy utilizam algoritmos especializados para a binomial, ainda mais rdpidos do que ambos
os métodos discutidos aqui, de modo que a utilidade principal desses algoritmos é didatica e
comparativa, permitindo compreender os diferentes custos computacionais associados a cada
abordagem.

2.3.4 Numero médio de passos em algoritmos de inversao recursiva

Nos algoritmos recursivos de inversao, a logica é sempre a mesma: dado um ntmero aleatério
U ~ Uniforme(0,1), acumulamos as probabilidades da distribui¢do até que a soma ultrapasse
U. O valor de X sorteado é exatamente o indice k em que essa condigdo se verifica pela primeira
vez.

Assim, se o valor sorteado é X = k, o algoritmo precisou verificar todos os valores 0,1,2, ...,k —
1 e s6 entdo aceitou k. Isso significa que o nimero total de passos é

S=k+1.
Como X ¢ a variavel aleatéria que estamos simulando, temos

E[S] = E[X +1] = E[X] + 1.



2.4. DISTRIBUICAO GEOMETRICA 25

Esse resultado é geral para qualquer algoritmo de inversdo recursiva que inicie a busca no
valor minimo do suporte e avance de forma sequencial. No caso da binomial X ~ Bin(n, p), por
exemplo, o nimero esperado de passos é

E[S] =1+ np,

uma vez que E[X] = np.

Portanto, o custo médio do algoritmo esta diretamente ligado ao valor esperado da distri-
buigdo sorteada: distribuigdes concentradas em valores pequenos produzem simulagdes muito
répidas, enquanto distribui¢des centradas em valores grandes exigem proporcionalmente mais

passos.

2.4 Distribuicao geométrica

A distribuicdo geométrica modela o nimero de ensaios de Bernoulli até a ocorréncia do primeiro
sucesso. Seja p a probabilidade de sucesso em cada tentativa, com 0 < p < 1. Definimos X como
o numero de ensaios necessdrios até o primeiro sucesso. Dizemos que X ~ Geom(p) se

P(X=k =1-p)tp, k=123,...

Nesse caso:

1 1—-p
E[X] ==, Var(X)= .
X]=2 2
Exercicio 14. Prove que a fungdo de probabilidade acima satisfaz ) - IP(X = k) = 1.

Exercicio 15. Prove as propriedades acima.

2.4.1 Simulando via Bernoullis

A distribuigdo geométrica modela o ntimero de tentativas até a ocorréncia do primeiro sucesso,
em uma sequéncia de experimentos de Bernoulli independentes com probabilidade p € (0,1) de
sucesso. Essa defini¢do leva naturalmente a um algoritmo de simulagdo baseado em Bernoullis.
A ideia é repetir experimentos de Bernoulli até obter sucesso pela primeira vez:

1. Inicializar o contador X < 1;
2. Gerar B ~ Bernoulli(p);
3. Enquanto B = 0, repetir:

e X+ X+1;

e Gerar novo B ~ Bernoulli(p);

4. Retornar X.

Note que esse procedimento reflete exatamente a defini¢do da varidvel: contar quantas tenta-
tivas sdo necessarias até que ocorra o primeiro sucesso.
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Exemplo 4. Se p = 0.3, entdo a probabilidade de obter um sucesso logo na primeira tentativa é 0.3. Se a
primeira tentativa falha, a segunda terd chance 0.3, e assim por diante.

Suponha que, ao simular, os primeiros valores de Bernoulli gerados foram 0,0, 1. Isso indica duas falhas
seguidas e um sucesso na terceira tentativa. Portanto, o algoritmo retorna X = 3.

2.4.2 Simulando a geométrica via inversao
A funcéo de distribuigdo acumulada é
P(X <j) = 1-P(X >j) = 1—P(primeiras j tentativas sio falhas) = 1— (1 — p)/.

Assim, podemos usar o método da inversdo para gerar X. Seja U ~ Uniforme(0,1). Definimos
X =jse

1-(1-p) ' <u<1-(1-p)y,
ou seja,

1-p/<1-U<(1-p)7,

0 que equivale a
X =min{j: (1-p) <1-U}.

Particionamento do intervalo para a distribuicdo geométrica (p = 0.3)

0.0 0.2 0.4 0.6 0.8 1.0
U ~ Uniforme(0, 1)

Como 0 < 1—p <1, temos log(1 — p) < 0. Aplicando logaritmos,
(1-p)<1-U <= jlog(l1—p)<log(l—U).

Logo,
(. . Jog(1-U)
X—mm{] 1] > log(1— p) }
Portanto, obtemos a férmula fechada
log(1 — U)J
X =|—|+1
LOg(l —p)

Como 1 — U ~ Uniforme(0, 1), podemos substituir 1 — U por U sem perda de generalidade,

Exemplo 5. Considere uma varidvel geométrica X ~ Geom(p) com p = 0.3 e seja U = 0.52 uma

resultando em

realizagdo de uma varidvel uniforme (0,1). Usando a formula fechada da inversio, temos
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e, substituindo os valores, obtemos

X = {%J +1 ~ [206]+1 = 3.

Outra forma é aplicar a inversdo direta da CDF, que é dada por
F(j) = P(X<j)=1-(1—p).
Procuramos o menor j tal que F(j) > U. Para p = 0.3, temos
F(1) =0.3, F(2) =051, F(3)~0.657.

Como F(2) = 0.51 < U = 0.52 mas F(3) = 0.657 > 0.52, 0 menor j que satisfaz é j = 3.

Distribuicdo Geométrica (p=0.3, n=10000)

BN [nversdo
s NumpPy
. Teérico

0.30

0.25

Probabilidade
© o
= N
(6, o

o
=
o

0.05

0.00

2.5 Distribuicao de Poisson

A distribui¢do de Poisson modela o nimero de ocorréncias de um evento em um intervalo fixo
de tempo ou espago, assumindo que tais ocorréncias sejam raras e independentes.
Dizemos que X ~ Poisson(A) se sua fungdo de probabilidade for

e Ak
k'

onde A > 0 representa a taxa média de ocorréncias no intervalo considerado.

P(X =k)= k=0,1,2,...,

A média e a variancia sdo dadas por
E[X]=A, Var(X)=A.

Exercicio 16. Prove que Y ;> IP(X =k) = 1.

Exercicio 17. Prove as propriedades acima. Dica: para a varidncia, calcule primeiro E[X (X —1)] e use o

fato de que
2

Var(X) = E[X(X — 1)] + E[X] — (E[X])".
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2.5.1 Simulag¢ido a Poisson via inversio e recursao

Seja X ~ Poisson(A). A fungdo de probabilidade é

)\i
P(X =i) = e—AZ_—', i=0,1,2,...

e essa expressao satisfaz a relacdo de recorréncia

A

P(X=i+1) = — P(X =i).

(X=it+1)= 2o P(X =)
Para ver isso, basta observar quele(X =i+1) = e‘A%. Separando um fator A/(i + 1),
obtemos P(X =i+ 1) = ZJ%] e~*4, que nada mais é do que 1%1 P(X = i). Assim, conhecendo

po = P(X = 0) = e, é possivel calcular recursivamente p; = Apg, depois p» = (A/2)p1, e
assim sucessivamente. Esse raciocinio evita a recomputacgdo de fatoriais a cada passo e fornece
um procedimento numericamente mais estavel.

O algoritmo cldssico para gerar uma varidvel de Poisson com pardmetro A funciona da se-

guinte maneira:

1. Gerar U ~ Uniforme(0,1);
2. Inicializar i =0, pg = e~ e F = py;

3. Enquanto U > F, atualizar
. . A
i +— i+1, Pi < T Pi-L F < F+p;

4. Retornar X = 1.

Esse procedimento verifica primeiro se X = 0, depois se X = 1, e assim por diante, até
encontrar o valor sorteado. O nimero médio de passos necessarios é 1+ A, de modo que o

algoritmo é eficiente para A pequeno, mas se torna custoso para valores grandes de A.

Exemplo 6. Considere A = 3 e suponha que o niimero aleatério gerado seja U = 0.35.

® Primeiro, calculamos py = e 3 ~0.0498¢ F = po ~ 0.0498. Como U = 0.35 > F, avangamos
para o préximo valor.

¢ Calculamos p1 = %po ~ 0.1494 e atualizamos F ~ 0.0498 4 0.1494 = 0.1992. Ainda temos
U = 0.35 > F, logo seguimos adiante.

e Agora pr = %pl ~ 0.2240 e F ~ 0.1992 + 0.2240 = 0.4232. Como U = 0.35 < F, o algoritmo
para aqui e retornamos X = 2.

Portanto, neste exemplo, o valor simulado da varidvel aleatéria foi X = 2.
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A=2 A=5 A=10 A=20

Inversao melhorada
0.25 NumPy
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o
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o
°
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2.5.2 Algoritmo melhorado

Uma forma mais eficiente de implementar o método é iniciar a busca em torno do valor mais

provavel da variavel, que esta proximo de A. Sejam = |A|. Calcula-se a probabilidade acumulada
F(m) =P(X < m),

usando a recorréncia das probabilidades. Em seguida, gera-se U ~ Uniforme(0,1) e procede-se
assim:

* se U < F(m), faz-se a busca recursiva para baixo (m —1,m —2,...);

e se U > F(m), faz-se a busca recursiva para cima (m+1,m +2,...).

Comparacao do tempo médio de simulacao da Poisson
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Note que a mesma identidade recursiva que relaciona P(X =i+ 1) a P(X = i) também pode
ser escrita no sentido inverso:
i+ 1
szgzzi P(X =i+1).

Assim, a partir de p,, = P(X = m), é possivel atualizar as probabilidades tanto para cima quanto

para baixo, sem necessidade de recalcular fatoriais. Isso garante que a busca em torno de m seja
realizada de forma eficiente, explorando o valor sorteado em ambas as diregdes.

Neste caso, o niimero de passos ndo depende mais diretamente de X, mas sim da distancia
entre X e A: para localizar o valor sorteado, precisamos primeiro verificar m, e depois avancar

| X — m| passos adicionais. Assim, o namero de passos é

T=1+|X—m|
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Como m =~ A, o custo médio pode ser aproximado por
E[T] =14+ E[|X - A|].

2.5.3 Rela¢io com a binomial

A distribuicdo de Poisson pode ser vista como um caso limite da distribui¢do binomial.
Seja X ~ Binomial(n, p), que modela o ntimero de sucessos em 7 tentativas independentes,
cada uma com probabilidade p de sucesso. Suponha agora que

n—o, p—0, demodo que A = np permanega constante.
Nesse regime, dizemos que a binomial entra no chamado limite de Poisson, e temos
Binomial(n, p) LN Poisson(A).
A funcdo de probabilidade da binomial é

Aproximacgao da Poisson por Bernoullis raros

A=3,n=20,k=3 A=10,n=20,k=13
E L ] L] L]
o
o
<
)
3
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A=3,n=200,k=4 A=10,n=200,k=11
g { ] L] L] L]
e
s
)
3
0.0 0.5 1.0 0.0 0.5 1.0
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Substituindo p = A/n, obtemos

= ()2 (-3

Para analisar o limite, consideramos cada fator separadamente. O coeficiente binomial pode

(1}:) _n(n—1)- -I;!(n —k+1)

ser escrito como

Dividindo numerador e denominador por ¥, temos

k! nk k' n n n

(n)_nk nn—1)---(n—k+1) nk‘nn—l n—k+1
L = .
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Cada termo do produto no numerador pode ser escrito como

e portanto

(0)-5(-) (-3 (-5

Quando n — oo, cada termo do produto tende a 1, de modo que
k k-
n —k
<1—)‘> — e, (1—)‘) —1
n n

Juntando os trés resultados, obtemos

Além disso,

Portanto,

lim P(X =k) = ——

n—00 k7

que é exatamente a func¢do de massa de probabilidade da distribui¢do Poisson(A).

2.6 Distribuicao binomial negativa

Seja X o ntimero de ensaios necessarios para obter um total de r sucessos, considerando que cada
ensaio é independente e resulta em sucesso com probabilidade p. Nesse caso, dizemos que X
segue uma distribuicdo binomial negativa (também chamada Pascal) com parametros p e r.

Sua fungdo de probabilidade é dada por:

P(X=n)= (Z:ll)pr(l—p)”_r, n=rr+1,r+2,...

Essa féormula ¢é justificada pelo fato de que, para que sejam necessdrios exatamente n ensaios

para obter r sucessos, os primeiros 7 — 1 ensaios devem conter exatamente r — 1 sucessos — o

(?:Dﬂ‘l(l -p)"

— e, em seguida, o n-ésimo ensaio deve ser um sucesso, com probabilidade p.

que ocorre com probabilidade

Seja X;, i = 1,...,r, o numero de ensaios necessdrios apés o (i — 1)-ésimo sucesso para
obter o i-ésimo sucesso. E facil ver que Xj, X, ..., X, sdo varidveis aleatdrias independentes com

distribuicdo Geom(p). Assim, como
X=X1+Xo+ -+ X,

temos, usando os resultados da distribuicdo geométrica:

E[X] = éIE[Xi] = ;, Var(X) = éVar(Xi) = 7’(1p—2p)
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Exercicio 18. Prove que a fungdo de probabilidade acima é vdlida, isto é, que Y ;. ,P(X =n) = 1.
Exercicio 19. Prove as férmulas da média e varidncia usando o fato de que X é a soma de v varidveis

independentes com distribuicdo Geom(p).

2.6.1 Simulando via Bernoullis

Uma forma direta de gerar uma varidvel Binomial Negativa é simular sucessivos ensaios de
Bernoulli(p) até obter o r-ésimo sucesso.

De fato, por defini¢do, X representa o nimero total de ensaios necessdrios até a ocorréncia de
r sucessos. Assim, o algoritmo pode ser descrito da seguinte forma:

1. Inicializar n = 0 (contador de ensaios) e s = 0 (contador de sucessos);
2. Enquanto s < r:

(a) Gerar B ~ Bernoulli(p);
(b) Atualizar n < n+1;

(c) Se B =1, atualizar s < s+ 1;

3. Retornar X = n.

Esse método é conceitualmente simples e corresponde exatamente a defini¢cdo da distribuicdo
Binomial Negativa. No entanto, quando p é pequeno e r é grande, o niimero esperado de ensaios
E[X] = r/p pode ser elevado, tornando o algoritmo computacionalmente mais custoso.

2.6.2 Simulando via soma de geométricas

Recorde que se X ~ NegBin(r, p), entdao X pode ser decomposto como
X=X1+Xo+ -+ X,

onde Xy, ..., X, sdo varidveis independentes com

X; ~Geom(p), i=1,...,r,

no suporte {1,2,...} (namero de ensaios até o primeiro sucesso).
Assim, podemos simular uma Binomial Negativa somando r geométricas independentes,

cada uma gerada via o método da inversao:

_ | log(1—U;) , .
Xi = { log(1—p) J +1, U; ~ Uniforme(0,1).

O algoritmo de simulacado segue:

1. Parai=1,...,r, gerar X; ~ Geom(p) via inversdo;

2. Retornar X =) ; X;.
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2.6.3 Simulando via inversido recursiva

Outra forma de simular a Binomial Negativa é aplicar diretamente o método da inversao, apro-
veitando a relagdo de recorréncia da sua func¢do de probabilidade.

Se X ~ NegBin(r, p), entdo

n—1

P(X=n)= (r_1>pr(1—p)”_r, n=rr+1r+2,...

Essas probabilidades satisfazem a seguinte relagdo recursiva:

P(X=n+1) n
PX=n) ~m-ri1 Pk

Exercicio 20. Prove a identidade recursiva acima.

Portanto, conhecendo P(X = r) = p’, podemos calcular recursivamente as demais probabili-
dades. Isso leva ao seguinte algoritmo:

1. Gerar U ~ Uniforme(0,1);
2. Inicializar n =r, p, = p", F = py;
3. Enquanto U > F, atualizar

Pt = Pn - (1-p), n<—n+l, F < F+puy1;

n—r+1

4. Retornar X = n.

O nuamero esperado de passos T no método recursivo néo coincide diretamente com E[X],
pois o algoritmo ja inicia em n = r, que é o menor valor possivel para a varidvel X ~ NegBin(7, p).

De fato, se o sorteio resultar em X = 7, o ntimero de passos dados pelo algoritmo é
T=Mmn-r+1,

pois comecamos verificando o valor n = r (primeiro passo) e avancamos até alcangar 7.

Assim, em termos de valor esperado,

IE[T}:IE[X—r]+1:;—r+1.

Esse termo —r aparece porque, embora E[X]| = r/p, o procedimento de inversdo nio percorre
todos os valores desde 0, mas ja parte de r.

Quando p é pequeno, E[T] pode ainda ser bastante grande, tornando o método recursivo
lento. Nessas situagdes, a versdo ingénua baseada na soma de geométricas pode ser mais eficiente
na pratica.
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2.6.4 Por que o nome “Binomial Negativa”?

O nome Binomial Negativa tem origem na conexdo com a expansdo binomial para expoentes
negativos. Para um inteiro n > 0 e p + q = 1, o teorema binomial fornece

n - n n—
1=(p+q)" =) <k>p"q g
k=0

Essa identidade estende-se a expoentes reais (expansao binomial generalizada):

. e fa+k-1
a-p = (T <

k=0

Tomandoa =7 € {1,2,...},
_, 2 (r+k—1
a-p =y (")
k=0

Os coeficientes (”']ifl) sdo precisamente os que aparecem na parametrizacdo da Binomial Nega-

tiva em termos do ntimero de falhas k antes do r-ésimo sucesso:

P(Y =k) = (“Li_l) P1-pk,  k=0,12,...

Para ver a equivaléncia com a forma escrita em funcdo do ntimero total de ensaios 7, deta-

lhamos a reparametrizagdo. Defina n = r + k (isto é, k = n — r). Entdo

<r+lii_1> - (Z!erk—_f)?! ~(n —<7:)!_(1)i1)! - (Zj)

Pela simetria binomial, (;) = (,“,); aplicando com 2 =n —1 e b = n — r obtemos

(yj):<W—$:@—m>:<¢j>

Substituindo k = n — r em P(Y = k) e usando as igualdades acima,

r+n—r)—1

IP(X:n):IP(Y:n—r):< 0y

) pria—p’
n—1\ , -
= 1 — n I" =17, 1, c e
(r_1>P( p) n=rr+
Mostramos, assim, passo a passo, que as duas formas da PMF — em funcéo de k (falhas) ou de
n (ensaios) — sdo exatamente equivalentes; trata-se apenas de uma reparametrizacao.
2.7 Distribuicao hipergeométrica

A distribuigdo hipergeométrica modela experimentos de selegdo sem reposicio a partir de uma
populacdo finita contendo dois tipos de elementos. Por exemplo, suponha uma urna com N + M
bolas, das quais N sdo claras e M sdo escuras. Retiramos, de forma aleatéria e sem reposigdo,
uma amostra de tamanho 7. Seja X o niimero de bolas claras na amostra.
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Nesse caso, cada subconjunto de tamanho n é igualmente provavel, e a probabilidade de
observar exatamente k bolas claras é
Ny M
(o) Goe)
N+My ’
)

P(X=k) = max(0,n — M) < k <min(n, N).
Dizemos entdo que X ~ Hipergeom (N, M, n).
As principais propriedades dessa distribui¢do sdo:
N N M N+M-—n
E[X] =n VarX) =m oM N M NTM-T

‘N+M
Exercicio 21. Prove que a fungdo de probabilidade acima é vdlida, isto é, que

min(n, N)
) P(X =k) = 1.

k=max(0, n—M)

Exercicio 22. Prove as férmulas da média e varidncia acima. Dica: considere o sorteio sequencial das n

bolas e defina X; como a varidvel indicadora do evento “a i-ésima bola é clara”. Para a varidncia, use a
1

decomposigio

Var(X) = iVar(Xi) +2 ) Cov(X;X;).
i=1

1<i<j<n

2.71 Simulando a Hipergeométrica

Uma maneira natural de simular X ~ Hipergeom(N, K, n) é reproduzir o sorteio sem reposigdo.
Basta imaginar uma populagdo com K sucessos e N — K fracassos, e retirar n elementos dela. O

valor de X serd o niimero de sucessos observados. Isso leva ao seguinte algoritmo:
1. Construir a populagdo formada por K uns (sucessos) e N — K zeros (fracassos);
2. Sortear n elementos dessa populagdo sem reposicao;
3. Definir X como a soma dos elementos sorteados;
4. Retornar X.

Para realizar o sorteio sem reposi¢io, podemos usar um procedimento eficiente baseado no
embaralhamento parcial de Fisher—Yates. A ideia é que ndo precisamos embaralhar toda a populacao,
apenas selecionar 1 elementos distintos de forma aleatéria. O algoritmo funciona assim:

1. Coloque os elementos da populacdo em um vetor de tamanho N;
2. Para cada posicdoi =1,2,...,n:

(a) Sorteie um indice j uniformemente entre i e N;

(b) Troque os elementos das posic¢des i e ;.
3. Os n primeiros elementos do vetor agora constituem a amostra sem reposicao.

Esse método garante que cada subconjunto de tamanho 7 tem a mesma probabilidade de ser
escolhido, e é mais eficiente do que embaralhar toda a populagéo.
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Distribuicao Hipergeométrica: Tedrica vs Simulacoes
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Figura 2.4: Distribuicdo Hipergeométrica com parametros N = 50 (populagdo total), K = 20

(ntmero de sucessos) e n = 10 (tamanho da amostra).

Tabela de referéncia

Distribuicio Técnica utilizada Dica/Obs

Suporte finito Inversao simples Separar em intervalos

Bernoulli Inversdo simples Caso particular do suporte finito com m = 2
Binomial Soma de Bernoullis ou inversao recursiva  Relagdo de recorréncia evita coeficientes binomiais
Poisson Inversao recursiva Relagdo pj 1 = l-_%lpi evita fatoriais
Geométrica Inverséo direta (CDF) Retornar X = Hi?&:g;] +1

Binomial negativa Soma de geométricas ou inversao recursiva Soma de r geométricas independentes
Hipergeométrica Sorteio sem reposicdo (Fisher—Yates) Selecionar 1 elementos distintos e contar sucessos




Capitulo 3

Variaveis continuas e como simula-las

Nosso objetivo agora é estudar algoritmos para simular varidveis aleatérias continuas, isto &,
varidveis cuja distribuicdo é descrita por uma fungdo densidade de probabilidade.
Como no caso discreto, o ponto de partida serd sempre o mesmo: assumimos que temos
acesso a uma variavel
U ~ Uniforme(0, 1),

e construiremos a partir dela procedimentos para gerar amostras de outras distribuicdes.

A principal diferenga em relagdo ao caso discreto é que, para varidveis continuas, muitas vezes
ndo é possivel escrever a funcdo de distribui¢do acumulada (CDF) de forma explicita, ou mesmo
obter sua inversa em forma fechada. Com isso, diversos métodos alternativos sdo necessarios.

Neste capitulo, organizamos os métodos de simulacdo em trés grandes grupos:
¢ Métodos por inversio: funcionam diretamente a partir da CDF da distribuicao;

* Métodos por rejeicio ou aceitacdo: baseiam-se em gerar propostas e aceitar com certa
probabilidade;

¢ Métodos por transformacao: aplicam fun¢des deterministicas a varidveis ja conhecidas.

3.1 Método da Inversao

O método da inversdo é uma das formas mais diretas de simular variaveis aleatérias continuas.
A ideia central é simples: se conhecemos a fung¢do de distribui¢do acumulada (CDF) F de
uma varidvel continua X, e se essa funcdo é estritamente crescente, entdo podemos inverter F e
definir
X = F"}(U), com U ~ Uniforme(0,1).

Exemplo 7. Prove o fato acima.

Esse procedimento garante que X tera exatamente a distribuicdo desejada, pois a probabi-
lidade de X cair em qualquer intervalo serd proporcional ao comprimento correspondente no
dominio de U.

Esse método é particularmente ttil quando a inversa de F pode ser escrita de forma explicita,
como ocorre com as distribui¢des Exponencial, Uniforme e Pareto, por exemplo.

37
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3.1.1 Distribuicao exponencial

A distribuigdo exponencial modela o tempo de espera até a ocorréncia de um evento em um
processo de Poisson, isto é, um processo no qual eventos ocorrem de forma continua e inde-
pendente, a uma taxa constante. Seja A > 0 a taxa de ocorréncia dos eventos. Dizemos que
X ~ Exponencial(\) se

fx(x) =Ae™™, x>0.

A fungdo de distribui¢do acumulada (CDF) é dada por:
Fx(x) =P(X<x)=1—-¢", x>0.

As principais caracteristicas da distribuigdo sao:

1

E[X] = oy

Var(X) =
Exercicio 23. Verifique que fx(x) é uma densidade de probabilidade, isto é, [;° fx(x)dx = 1.

Exercicio 24. Prove as expressoes da média e varidncia acima.

A distribuicao exponencial é um exemplo cldssico onde o método da inversdao pode ser apli-

cado diretamente. Sabemos que a CDF é
F(x)=1—e"%,

e queremos encontrar sua inversa, portanto, basta resolver a equacdo F (x) = U, com U ~

Uniforme(0, 1). Isso nos leva a:

l—eM™=U = x= —%log(l—ll).

Como 1 — U ~ Uniforme(0, 1), podemos reescrever de forma equivalente:

X = —% log(U), com U ~ Uniforme(0,1).

Assim, o algoritmo para simular uma varidvel X ~ Exponencial(A) via inversao é:
1. Gerar U ~ Uniforme(0,1);

2. Calcular X = —% log(U);

3. Retornar X.

Relacido com a distribuicdo geométrica

A distribuigdo exponencial pode ser vista como o andlogo continuo da distribui¢do geométrica.
Na distribuicdo geométrica, X ~ Geom(p), interpretamos X como o ntimero de tentativas
independentes até a ocorréncia do primeiro sucesso, em uma sequéncia de ensaios de Bernoulli

com probabilidade p de sucesso.



3.1. METODO DA INVERSAO 39

A distribui¢do exponencial, por sua vez, modela o tempo continuo até a ocorréncia de um
evento, sob uma taxa constante A > 0. Embora uma seja discreta e a outra continua, existe uma
relacdo direta entre essas duas distribui¢des, que pode ser formalizada por um limite.

Seja X,, ~ Geom(p,), com p, = A/n, e defina a varidvel reescalada

A variavel T, representa o tempo até o primeiro sucesso quando fazemos n tentativas por uni-
dade de tempo, cada uma com probabilidade de sucesso p, = A/n. A medida que n — oo, as
tentativas se tornam mais frequentes e individualmente menos provaveis, mas o nimero espe-
rado de sucessos por unidade de tempo permanece constante: n - p, = A.

Vamos mostrar que T, converge em distribui¢do para uma variavel exponencial de pardmetro

A. De fato, temos:

X
P(T, >t) =P <n” > t) =P (X, > |nt]).
Como X, é geométrica com parametro p, = A/n, segue que:

[nt]
P(Xy >k) = (1—ps), logo P(T,>t)= <1 - 2) .

Quando n — oo, vale que |nt| ~ nt, e obtemos:

nt
(1 - A) — e M,
n

P(T, <t) =>1—eM,

Portanto,

que é a funcdo de distribui¢do acumulada da exponencial Exp(A). Isso conclui a demonstragdo

da convergeéncia.

Convergéncia de T, = X,/n para a Exponencial(A)
n=5 n=20

—— Exponencial(A =2) —— Exponencial(A =2)
0 Ta=Xal5 Tn = Xnl20

o

Density

n=100 n=1000

= Exponencial(A =2) = Exponencial(A =2)
Tn=Xn/100 1 Tn=X,/1000

o

Density

;%
(
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Essa convergéncia tem uma interpretacdo intuitiva. Inicialmente, a varidvel X, conta o na-
mero de tentativas até o sucesso. Se cada tentativa leva um tempo fixo de 1/n segundos, entdo o
tempo total até o sucesso é T, = X, /n.

A divisdo por n serve justamente para transformar o ntimero de tentativas em tempo conti-
nuo. Por exemplo, se cada tentativa leva 0.01 segundo e o sucesso ocorre na 17° tentativa, entdo
o tempo até o sucesso foi 17 x 0.01 = 0.17 segundos.

A medida que 1 cresce, as tentativas sio feitas cada vez mais rapidamente (a cada 1/7 uni-
dades de tempo), e a chance de sucesso em cada uma cai proporcionalmente (p, = A/n). O
resultado final é que o tempo total até o sucesso — T, — se aproxima de uma varidvel continua

exponencial com taxa A.

Essa relacdo também pode ser observada diretamente nas férmulas de inversdo utilizadas
para simulacao.
Seja U ~ Uniforme(0,1). A inversdo da CDF da exponencial da:

1

Ja no caso da geométrica X,, ~ Geom(p,), a férmula de inversdo baseada na CDF discreta é:

In(U) A

X, = | ——————— = —.
" hn(l - pnﬂ oM

Dividindo por 7, temos:

X, 1 In(U)

T, = —~ —-
n n In(l1—A/n)

Sabemos que para n grande,

entao:

0 que mostra que, no limite, a férmula de simulagdo da geométrica reescalada tende para a
férmula da exponencial.

Relag¢io com a Poisson

A distribuigdo exponencial pode ser entendida como o analogo continuo da distribuigdo geomé-
trica, e sua relagdo com a distribuigdo de Poisson surge naturalmente ao considerarmos divisdes
finas de um intervalo fixo em pequenos subintervalos com experimentos de Bernoulli raros.

Considere o intervalo de tempo [0, 1] dividido em n subintervalos de comprimento 1/n. Em
cada subintervalo, ocorre um evento (ou sucesso) com probabilidade p, = A/n, de forma inde-
pendente. Este é exatamente o modelo da varidvel binomial

X, ~ Binomial(n,A/n),
que conta o nimero total de eventos no intervalo. Sabemos que, quando n — oo,

Xy Poisson(A).
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Por outro lado, podemos perguntar: quanto tempo leva até o primeiro evento acontecer? A
resposta a essa pergunta leva a distribui¢do exponencial.
Seja X, ~ Geom(p,) com p, = A/n, modelando o niamero de subintervalos até o primeiro

sucesso. O tempo continuo correspondente é entao

X
Tn:l.
n

Como visto anteriormente, temos
T, & Exponencial(A).

Bernoullis raros: intervalos geométricos (discretos) e média vs exponencial

n = 100, A = 3, Sucessos = 5 | média(Geom/n) = 0.333 vs 1/A = 0.333

: Tn=Xn/n
Geomél:rica Geométrica Geométrica Geométrica Geométrica
<l
(] ° . . °
1
Tempo
n =100, A = 10, Sucessos = 11 | média(Geom/n) = 0.101 vs 1/A = 0.100
1
! Th=Xuo/n
Geome%trlca Geométrica GeoGwineTica Geométrica Geom@taraétricaGeométrica Geométrica Geométrica Geométrica
> o o —> o <«
[/ e oo o oo . ° ° o
1
i | 1 1 L 1 1
0.0 0.2 0.4 0.6 0.8 1.0
Tempo

Portanto, podemos pensar nessas distribuigdes da seguinte forma:
e A distribuigado Poisson modela o nimero total de eventos no intervalo.
¢ A distribuigdo geométrica modela a posigdo discreta do primeiro sucesso.

* A distribuigdo exponencial modela o tempo continuo até o primeiro evento.

3.2 Meétodo da rejeicao-aceitacao

Embora o método da inversdo funcione muito bem para distribui¢des cuja fun¢do de distribuigdo
acumulada (CDF) possa ser invertida de forma analitica ou computacionalmente eficiente, ele
se torna invidvel em casos como o da distribui¢do normal padrdo. A fungdo de distribuigao
acumulada da normal, denotada por ®(x), ndo possui inversa em forma fechada, o que impede
a aplicacdo direta da formula X = ®~!(U). Embora existam aproximagdes numéricas para ®~!,
elas podem ser computacionalmente custosas ou introduzir erros de arredondamento. Nesses
casos, recorre-se a métodos alternativos que nado exigem a inversdo da CDF — como o método

da rejeicdo-aceitagao.

O método de aceitagdo-rejeigdo é uma técnica geral para gerar varidveis aleatérias com uma
dada densidade f(x), partindo de uma densidade auxiliar g(x) mais simples, da qual é facil
simular. A ideia central é gerar candidatos a partir de g e aceitd-los com uma certa probabilidade
que depende da razdo f(x)/g(x).
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Suponha que desejamos gerar uma variével aleatéria X com densidade alvo f(x), mas ndo
dispomos de um método direto para isso. Por outro lado, assumimos que sabemos simular uma

varidvel Y com densidade auxiliar g(x), e que existe uma constante ¢ > 0 tal que

f@) _
() =

Essa condigdo garante que a fungdo f estd sempre abaixo da curva cg, ou seja, f(x) < cg(x)
f(x)
cg(x)

interpretada como uma probabilidade de aceitacdo. Note que, ao integrar ambos os lados da
desigualdade f(x) < cg(x), obtemos [ f(x)dx < [ cg(x)dx, ouseja, 1 < ¢, e portanto 1 < 1.

para todo x.

para todo x. Além disso, isso assegura que a razdo estd sempre entre 0 e 1, podendo ser

O procedimento do método de rejeicdo-aceitagdo é o seguinte:
1. Gere um candidato Y ~ g.

2. Gere um numero aleatério U ~ Uniforme(0, 1), independente de Y.

Y
3. SelU < f ( ) , aceite Y como amostra e retorne X =Y.
cg(Y)

4. Caso contrério, rejeite Y e retorne ao passo 1.

Para entender por que o método de rejeicdo-aceitagdo funciona, vamos construir uma intui¢do
passo a passo com um exemplo concreto. Suponha que queremos gerar uma varidvel aleatéria
X ~ f, com densidade definida por

f(x) =20x(1—x)% x€[0,1].

Essa é uma densidade valida sobre o intervalo [0, 1], mas sua fung¢do de distribui¢do acumulada
F(x) ndo possui inversa em forma fechada ja que envolve resolver uma equagdo polinomial de
grau 5, o que inviabiliza o uso direto do método da inversdo. Por isso, recorremos ao método de
rejeicao.

Nesse caso, utilizamos como densidade auxiliar a uniforme g(x) = 1 sobre [0,1], que é facil
de simular. O procedimento funciona da seguinte forma:

1. Escolhemos uma constante ¢ > 0 tal que f(x) < cg(x) para todo x € [0,1]. Como g(x) =1,
essa condigdo se torna f(x) < c. Para garantir isso, basta determinar o valor méximo da
funcdo f(x) no intervalo [0, 1], o que pode ser feito derivando:

f(x) = 20x(1 — x)® = 20x — 60x* + 60x> — 20x*,

2. Geramos um candidato Y ~ g, ou seja, escolhemos um ponto Y aleatério uniformemente
em [0, 1].

3. Geramos um valor U ~ Unif(0, 1), que usaremos para introduzir variabilidade vertical.

4. Calculamos a altura U - cg(Y). Como g(Y) =1, isso equivale a U - ¢, ou seja, sorteamos um
ponto dentro do retangulo de altura c sobre o intervalo [0, 1].
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5. Comparamos essa altura com o valor da densidade f(Y). Se

U-cg(Y) < f(Y),
aceitamos o valor Y como amostra de X; caso contrario, rejeitamos e repetimos o processo.

A interpretacdo geométrica é simples: estamos sorteando pontos aleatérios dentro do retan-
gulo delimitado por x € [0, 1] e altura c. Esses pontos tém coordenadas (Y, U -cg(Y)). Aceitamos
apenas os que caem abaixo da curva f(x). Dessa forma, os pontos aceitos se acumulam na regido

sob f, replicando a forma da densidade desejada.

Método da rejeicdo-aceitacdo: f(x) =20x(1 — x)3

W x = .
fix)=20x(1—-x)> 2
c-g(x) (Uniforme) *
Rejeitados

Aceitos

Altura: U-cg(x)

0

Teorema 5. Sejam f e g fungdes de densidade de probabilidade com suporte em um conjunto X C R, e

suponha que existe uma constante c > 0 tal que

f)

ara todo x € X.
g) = F

Considere o algoritmo de geragdo:

1. GereY ~ g e U ~ Uniform(0, 1), independentes.

2. Retorne X =Y se U < Cg((?). Caso contrdrio, repita.

Entdo a varidvel aleatéria X, definida como o primeiro valor Y aceito, possui densidade f. Além disso,
o niimero total de iteragoes até a aceitagio segue uma distribuigdo geométrica com pardmetro 1/c.

Demonstragio. Seja f a densidade-alvo da qual desejamos amostrar. Usamos uma densidade
auxiliar ¢, com suporte que contém o de f, e uma constante ¢ > sup, %.

Queremos mostrar que a varidvel X aceita tem densidade f. Para isso, analisamos sua fungao
de distribuigdo acumulada Fx(x) = P(X < x). Pela defini¢do do algoritmo, temos:

P (Y sx U< cg@))

P (U < cg%)

P(X < x) =P(Y < x| aceito) =
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Usamos a férmula da probabilidade condicional:

]P<Y§x,u<cj;(()%>:/]P<Y§x,u<];(1;))|Y:]/>8(y)d]/

—/ﬂ’<y<x u< ;(()>IY y)8(y)dy

:/_0011)<u< cg(y >g(y)dy
= /_ xoo C];(yy)) 8(y)dy
—i/xwf(y)dy
De forma anéloga:

]P<U<C Y)>:/]P<U< :y>g(y)dy
=/1P<U< =y>g(y)dy
:/11’( ) (v) dy

fy)
i

c (y
| fw)
Substituindo numerador e denominador:

Lt fy)dy
1

c

P(X <x)= Z/_xoof(y)dyzFx(x)-

Portanto, X ~ f, como queriamos demonstrar.
Além disso, a probabilidade de aceitacdo em uma tinica tentativa é dada por:

pluc /)L

ou seja, cada tentativa tem probabilidade 1/c¢ de ser aceita. Portanto, o nimero de repeti¢oes até

obter um ponto aceito segue uma distribuigdo geométrica com parametro 1/c.
O

3.2.1 Distribui¢ao normal

A distribui¢do normal padrao, denotada por N(0,1), é uma das distribui¢des mais importantes

da estatistica e da probabilidade. Sua densidade é dada por:

1
flx) = e 2, xeR

Ela possui média E[X] = 0 e variancia Var(X) = 1.
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Como a fungio de distribuicdo acumulada ®(x) = [*_ f(t)dt ndo possui inversa fechada,
o método da inversdo ndo pode ser aplicado diretamente. Em vez disso, uma abordagem alter-
nativa € utilizar uma técnica baseada em outra distribuicdo mais simples, como a exponencial,
combinada com o método de rejeicédo.

Uma forma eficiente de simular uma varidvel normal padrdo positiva X ~ N'(0,1) condicio-
nada a X > 0 é utilizar o método da rejeicdo com uma distribui¢cdo exponencial como proposta.

Sabemos que a densidade da normal padrao é

- _ a2 .
e que, para x > 0, a fun¢do decresce com a cauda e~ /2 Por outro lado, a densidade da

distribui¢do exponencial com taxa A =1 é

Método de Rejeicao: Normal Truncada vs Exponencial

—— Normal truncada f(x)
L4y == Envelope ¢ * g(x)
Aceitos

Rejeitados

densidade

e e

Note que:

Para aplicar o método da rejei¢do, precisamos encontrar o ponto de maximo da razéo f(x)/g(x),

ou seja, maximizar a fungdo x — x2 /2. Derivando:

d x?
dx(x—2>—1—x—0:>x—1.

Portanto, o méaximo ocorre em x = 1, e o valor da constante ¢ sera:
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A razdo f(x)/cg(x) pode entdo ser escrita como:

Sy —ow (-1

0 que nos leva ao seguinte algoritmo:

1. Gere Y ~ Exp(1).

2. Gere U ~ Uniforme(0,1).

_1)2
3. Se U < exp (— (Y 21) ), aceite Y como amostra da normal positiva.

4. Caso contrério, volte ao passo 1.

Finalmente, se X ~ |A(0,1)], isto é, uma normal padrdo truncada para valores positivos
(obtida via o algoritmo anterior).
Para gerar uma normal padrdo simétrica Z ~ N(0, 1), basta sortear um sinal S ~ Bernoulli(1/2),
e definir:
X, se S =1,

—X, seS=0.

7/ =

Dessa forma, Z tem distribui¢do simétrica em torno de zero, com densidade normal padréo,
como desejado.
Intuicao geométrica

O método da rejeigdo pode ser visualizado como um processo de amostragem de pontos aleatérios
em uma regido do plano, com o objetivo de “pintar” a curva da densidade alvo f(x).

Método de rejeigao com constante ¢ maior do que o necessario

—— f(x): Normal truncada
=== c-g(x) comc=2.63

% Aceitos
Rejeitados

0.8 je

0.6 [

densidade / altura

Imagine que temos uma funcio auxiliar g(x), da qual sabemos simular facilmente, e uma
constante de majoragdo ¢ > 0 tal que f(x) < cg(x) para todo x. Isso nos permite usar cg(x)
como um envelope que cobre toda a curva de f(x).

A cada tentativa, sorteamos:

e Um valor Y ~ g(x): isso escolhe uma posigdo no eixo x, com densidade g;
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e Um valor U ~ Unif(0,1): isso define uma altura relativa no intervalo [0, cg(Y)], formando
o ponto (Y, U -cg(Y)) dentro do retangulo sob o envelope.

O ponto é aceito se estiver abaixo da curva de f, ou seja, se

f(Y)
U< cg(Y)’

Caso contrério, o ponto é rejeitado.

Assim, ao longo do tempo, os pontos aceitos se acumulam nas regides onde f(x) é maior,
formando uma amostra com exatamente a distribui¢do desejada.

Perceba que a constante ¢ controla a eficiéncia do método: quanto maior ¢, maior a 4rea total
do envelope cg(x) em relagdo a curva alvo f(x), e mais pontos sdo desperdicados. O valor ideal
de ¢ é o menor possivel que ainda garanta f(x) < cg(x) para todo x; nesse caso, a taxa de
aceitacdo é maximizada e iguala 1/c.

3.3 Distribuicio Gamma

A distribuicdo Gamma com parametros a« > 0 (forma) e 6 > 0 (escala) é definida pela densidade

1
f(x) = W

x& e x/0 x>0,

onde I'(a) é a fungdo Gama de Euler.

Uma maneira natural de interpretar essa distribuigdo é por analogia com modelos discretos.
No mundo discreto, a distribuicio Geométrica mede o nimero de ensaios necessarios até obser-
var o primeiro sucesso em uma sequéncia de Bernoullis. Se quisermos o niimero de ensaios até
o r-ésimo sucesso, obtemos a Binomial Negativa, que pode ser vista como a soma de varidveis
Geométricas independentes.

No mundo continuo, a Exponencial exerce um papel andlogo ao da Geométrica: ela mede o
tempo de espera até o primeiro sucesso. Seguindo a mesma légica, a distribuicdo Gamma surge
como soma de vdrias varidveis Exponenciais independentes, representando o tempo de espera
até o a-ésimo sucesso.

Alguns casos particulares:
* Quando a« = 1, a Gamma coincide exatamente com a Exponencial.

* Quando a é um inteiro maior que 1, a Gamma pode ser entendida como a soma de «
Exponenciais independentes.

* Mesmo para « ndo inteiro, a distribuicio Gamma mantém a interpretagdo de “tempo de
espera até sucessos acumulados”, generalizando de forma continua a Binomial Negativa.

O parametro de forma a regula quantos sucessos estdo sendo acumulados e, portanto, afeta
diretamente a forma da distribuigao:

¢ Para a < 1, a densidade concentra-se fortemente perto de zero.
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Gamma(a=0.5, 6=1) Gamma(a=1, 6=1)
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¢ Para a =1, a densidade é simplesmente a Exponencial decrescente.
e Para « > 1, a densidade é unimodal, com méaximo em (a — 1)6.

Ja o pardmetro de escala  atua como fator multiplicativo, alongando ou comprimindo a

distribui¢do. A média e a variancia crescem proporcionalmente a ele, conforme:

E[X] = ab, Var(X) = a6

3.3.1 Simulando quando « é inteiro

Quando o parametro de forma é inteiro, « = k € N, a distribui¢do Gamma(k, ) (escala 6 >
0) recebe o nome de Erlang. Ela pode ser obtida como a soma de k varidveis exponenciais

independentes. Na parametrizacdo por taxa A = 1/0:

[I=

X ~ Gamma(k,A) < X =) E, E; K& Exp(A).

O algoritmo de simulacéo é o seguinte:
1. Fixeke NeA>0(ouf =1/7A).
2. Gere E; ~ Exp(A) de forma independente, parai =1,...,k.

3. Calcule X = ¥¥ | E;. O resultado segue X ~ Gamma(k, A).

3.3.2 Simulando quando « > 1 via aceitacdo-rejeicao com Exponencial

Considere X ~ Gamma(w, A) com & > 1 (parametrizagdo por taxa A). A densidade alvo é

flx) = @) x* e, x> 0.
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Gammal(k, 0): simulacao (a inteiro) vs. densidade tedrica

0.10¢ Histograma (simulado)
Densidade tedrica Gamma(k=5, 86=2.0)
0.081
5 0.06f
©
o
[}
c
O]
©0.041
0.02
0.00 0 5 10 15 20 25 30 35
X

Usaremos como proposta Y ~ Exp (), com densidade
g(x) = pe ™, x> 0.

Para que o método de aceitagdo-rejeigdo seja valido, precisamos de uma constante c tal que

f(x) < cg(x) para todo x > 0. O quociente

f(x) A" o1 ef(Afy)x

glx)  T(a)p

mostra que é necessdrio ter y < A, pois caso contrdrio o termo exponencial ndo decai e o quoci-

ente ndo tem maximo finito. Quando u < A, 0 madximo ocorre em

_ a—1
A=y’

*

com valor

A fa—1\*!
A —(a—1)
) = Faya (A—y) e

A probabilidade de aceitagdo por tentativa é 1/¢(p) e, portanto, o nimero médio de tentativas
até aceitar uma amostra é ¢(p). Interpretando em tempo continuo como um processo de Poisson
de taxa 1, o thinning com probabilidade 1/¢(u) gera um processo aceito com taxa 1/c(p), de
modo que o tempo médio entre aceitagdes é c(y).

O algoritmo é o seguinte:
1. Escolha i € (0,A), por exemplo y = p* = A/a que minimiza c(y).
2. Gere Y ~ Exp(p) e U ~ Unif(0,1).

3. Aceite X =Y se U < f(Y)/(c(n) g(Y)); caso contrario, volte ao passo 2.
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O valor aceito X tem distribuicdo Gamma(a, A).
A tabela a seguir mostra a constante c* e a taxa de aceitagdo 1/c* para alguns valores de « na
escolha 6tima p = A/« (os valores independem de A):

a |pr=Ala|ct = Fo(cz)e_(”‘_l) aceitacado (1/c*)
1.5 ZA 1.2573 0.7953
2 A 1.4715 0.6796
3 A 1.8270 0.5473
5 A 2.3848 0.4193
8 A 3.0355 0.3294
12 HA 3.7306 0.2681

3.3.3 Simulando quando « < 1
Para 0 < a < 1, uma forma simples de simular I'(«, 0) é usar a identidade

se G~T(a+1,60) el ~ Unif(0,1) (indep.), X = GUY* ~ T(a,0).

Gamma(a=0.5, 6=1): simulacao (a<1) vs. densidade tedrica
6_

Histograma (simulado)
Densidade teérica Gamma(a=0.5, 6=1.0)

densidade

Para entender essa relagdo, considere as varidveis independentes (U, G) com U ~ Unif(0,1)
eG~T(a+1,0),0<a < 1. Defina a transformagdo

(x,8) = T(u,g) = (gu’* g),
cuja inversa ¢
(w,g) = T (x,8) = ((x/8)" 8)-
O suporte transformado é x > 0e g > x (pois u € (0,1) implica x/g € (0,1)).
A densidade conjunta de (U, G) é

gzxefg/(?
fuc(u,g) = fu(u)fo(g) = L) (u) Fla 1) 0571 g >0.
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Pela férmula de mudanga de variavel,

fxc(x8) = fuc((x/8)% g) 'deta(”’g)‘.

I(x,8)
Calculamos o jacobiano usando a inversa u = (x/g)“:
a—u = a—1,—a 871/{ — _(Xxlxg_(“"'l) 878‘ 878‘ =1
ox ’ dg ’ ox adg
logo
a(u,g) Ju a—1,—a
eS| = 1o =
Portanto,
gzxe—g/e a—1,—a axt ! —g/0

fx6(%,8) = 1 (x00)(8) T(a+1)6e1 ax" g =100 (8) We g

Integrando em g para obter a marginal de X:

) “xa—l 00 ax
— — -g/0 — —x/0
fx() / fxo(xg)dg r((x+1)9a+1/x ¢ tAg = T yget 00

Usando I'(a +1) = aT'(a), obtemos

xa—le—x/ﬂ
fX(X) == W, x> 0,

que é exatamente a densidade T'(«,6). Logo, X = G UY* ~ T'(a,9).
O algoritmo de simulacao é:

1. Dado0 <a <1e >0, definaa’ =a+1.
2. Gere G ~ T'(«/,0) (por exemplo, via Marsaglia-Tsang, pois ' > 1).
3. Gere U ~ Unif(0,1), independente de G.

4. Retorne X = G UY*. Entao X ~ I'(w,9).

3.4 Distribuicao Beta

A distribui¢do Beta é uma das mais importantes distribui¢des continuas em estatistica, definida
no intervalo unitdrio [0,1] e parametrizada por dois pardmetros de forma a« > 0 e f > 0. Sua
densidade é dada por

onde

é a fungdo Beta de Euler.
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A interpretacdo intuitiva da distribuicdo Beta é como um modelo de incerteza sobre proba-
bilidades. Se pensamos em x como a probabilidade de sucesso em uma sequéncia de ensaios
de Bernoulli, a Beta aparece naturalmente como distribuicdo a posteriori em modelos Bayesianos
conjugados: comecando com uma priori Beta(x, B), apds observar s sucessos e f fracassos, a
posteriori é Beta(a + s, 8+ f).

A forma da densidade é bastante flexivel:
* Para a, 8 < 1, a densidade concentra-se nos extremos 0 e 1.
e Para « = § =1, temos a uniforme no intervalo (0,1).

e Paraa > 1e f > 1, a densidade é unimodal, com méximo em (a« —1)/(a + g —2).

Os momentos principais sdo:

BX = g

_ ap
Var(X) = G B BT 1)

Essas formulas mostram como « e B podem ser interpretados como “pseudocontagens” de suces-
sos e fracassos, de forma que « +  controla a concentra¢do da distribuigdo em torno da média.

Densidades da distribuicao Beta para diferentes parametros
0.5, B=0.5

L T TR T
L
o™ ™ ®®
L T T |

N O

QR KR ! R K

densidade
N

w
T

O.‘O 012 0;4 016 0.8 1.0

3.4.1 Simulando a Beta via aceitacdo-rejeicdo com proposta uniforme

A distribui¢do Beta(a, ) tem suporte em (0,1), de modo que uma escolha natural de proposta
é Y ~ Unif(0,1). A densidade da uniforme é g(y) = 1 para 0 < y < 1, e precisamos de uma

constante c tal que
fly) < cgly)=c, 0<y<l

O algoritmo de aceitagdo-rejeigdo é:

1. Gere Y ~ Unif(0,1) e U ~ Unif(0, 1) independentes.
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2. Aceite X =Y se U < f(Y)/c, caso contrério repita o passo 1.

O valor aceito X terd distribuicdo Beta(a, ).
A escolha 6tima de ¢ pode ser caracterizado em trés casos:

* Sea >1ef >1,adensidade é unimodal, com modo em

. a—1
Y T arp-2
e portanto
* 1 *\ X — *\p—
c=f) =g WAy

* Se o = B =1, a distribui¢do é uniforme, logo ¢ = 1.

* Sea < 1oup <1, a densidade diverge em uma das extremidades (0 ou 1), e assim
sup f(y) = co. Nesse caso ndo existe constante finita ¢ e o método de aceitagdo-rejeigao
com uniforme como proposta ndo pode ser aplicado.

3.4.2 Simulando a Beta via Gammas independentes

O método mais utilizado e geral para simular variédveis Beta(a, f) explora a relacdo entre as
distribui¢des Beta e Gama. Seja

G ~T(a,1), Gy, ~T(B1),

independentes. Entdo vale a identidade

G

X = ———
G+ G

~ Beta(a, B).

A prova segue do fato de que o vetor normalizado (Gi,G,)/(G1 + G,) tem distribuicdo
Dirichlet(a, B), e portanto sua primeira coordenada é Beta(w, §). Outra forma é calcular a densi-
dade conjunta de (X, T), com X = ﬁ e T = G; + Gy, e verificar que a marginal de X coincide
com a densidade da Beta.

O algoritmo é simples e eficiente:

1. Gere Gy ~T'(w,1) e G» ~ T'(B,1) de forma independente.

_ G
2. Retorne X = GGy

Esse procedimento funciona para qualquer «, 8 > 0, inclusive quando sdo menores que 1, ao

contrdrio do método de aceitagdo-rejeigdo com proposta uniforme.

3.5 Transformag¢des de Variaveis Aleatérias

Neste capitulo estudaremos transformacdes de varidveis e vetores aleatérios. A ideia central é
a seguinte: dado um modelo probabilistico inicial, frequentemente precisamos aplicar fung¢des a
varidveis ou vetores aleatérios para obter novas quantidades de interesse. O objetivo, entdo, é
caracterizar a distribuicdo resultante ap6s a transformacao, seja ela univariada ou multivariada.
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Beta(a=0.5, B=0.8) Beta(a=5, B=3)

Simulagao (via Gammas) Simulagao (via Gammas)
10 Densidade tedrica Beta Densidade tedrica Beta
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3.5.1 Geracgido de Normais via Método de Box—-Muller

Seja U ~ Unif(0,277) e T ~ Expo(1) independentes, com densidade conjunta

1
) = —e f, 0,27), t > 0.
fur(u,t) zne ue(0,2m),t>

Definimos a transformacgao
X =+v2TcosU, Y = v2Tsin U.

O objetivo é determinar a densidade conjunta de (X, Y). Para isso usamos a férmula de mudanga

de variveis

a(u,t)
d(x,y)

fxy(x,y) = fur(u,t) |det

7

onde (u,t) é obtido a partir de (x,y).
Primeiro observamos que

x* +y* = 2t(cos® u +sin®u) = 2t,
de modo que
t = %(x2 +v°), u = arctan() (ajustado para o quadrante correto).

Assim, a transformacao é invertivel.

O préximo passo é calcular o jacobiano da transformagédo direta (i, t) — (x,y). Temos

a—x—— 2t sinu a—x—icosu
ou ’ ot /2t ’
ay ay 1
= = V2t = = — .
5 \Fcosu, o \/ﬂsmu
Logo,
—\/Esinu ﬁcosu
]:
V2t cosu ﬁsinu

O determinante é

det(]) = (—\/ﬂsinu) (ﬁ sinu) - (ﬁ cosu) (\/ﬂcosu).
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Simplificando,

det(]) = —sin®u — cos®>u = —1.

Portanto,
det(J)| = 1.

Box-Muller: representacao em coordenadas polares
4_

Aplicando a férmula de mudanga de varidveis,

a(u,t)
a(x,y)

Lo

fxy(x,y) = fur(u,t) ’det P

Substituindo ¢t = %(x2 +12),

fur(oy) = 5 op(~ 52+ 1),

Finalmente, notamos que

fxy(xy) = <\/127Te"2/2> <\/127Tey2/2) ,

o que mostra que X e Y sdo independentes e ambos tém distribuigdo Normal padrao.

Com essa deducdo, concluimos que (X, Y) definidos acima sdo varidveis independentes com
distribui¢do Normal padrdo. Assim, o método de Box-Muller pode ser usado diretamente para
gerar Normais a partir de varidveis Uniformes e Exponenciais. Na prética, o algoritmo segue os

seguintes passos:

1. Gere U ~ Unif(0,27).
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2. Gere T ~ Expo(1).

3. Calcule X = 2T cosU e Y = v2Tsin U.

4. Entdo X e Y sdo independentes e possuem distribui¢do N (0, 1).

Intuitivamente, o que estamos fazendo é gerar um par de varidveis Normais independentes
(X,Y) e representa-las em coordenadas polares: o angulo é sorteado uniformemente e o raio vem
de uma distribui¢do que garante a forma circular da densidade Normal.

3.5.2 Geragao da normal bivariada

z

Nosso objetivo agora é mostrar como simular uma Normal bivariada (Z, W) com marginais
N(0,1) e correlagdo p, onde —1 < p < 1. A ideia é construir (Z, W) a partir de variaveis
independentes mais simples.

Sejam X, Y ~ AN (0,1) independentes. Definimos

Z=X, W =pX+1Y, T=4/1—p%

Entdo Z e W tém marginais N (0,1) e Corr(Z, W) = p. Este é um procedimento construtivo que

permite gerar diretamente a Normal bivariada a partir de duas Normais independentes.

Para verificar a validade da construgdo, vamos obter a densidade conjunta de (Z,W). A
densidade de (X,Y) é

1
Fur(m) = 5 oxp(~3(2 4 7).
Como a transformagéo é
z =X, w = px + TY,

a inversa é
w — pz

X =z, y=—

Aplicando a férmula de mudancga de variaveis,

_ I(x,y)
fzw(z,w) = fxy(x,y) |det 3z,w)|"
com (x,y) dados pela inversa acima.
O jacobiano da transformacao inversa é
axy) (% &Y _[1 0
dzw) \% | \_e 1]’
dz  ow T T
portanto
qet 2y | 1
d(z,w) T

Substituindo em f7 w,

ot o (42 5.

21T
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Fazendo as contas e lembrando que p? + 7> = 1, obtemos

1 1
fow(zw) =5 exp<—21_2 (2% — 20zw + wz)) :

Essa é exatamente a forma conhecida da densidade Normal bivariada com matriz de covari-

ancia

De fato, podemos escrever
1 1 -1 T
fZ,W(Z, ZU) = Wexp(—z(Z, ZU)Z (Z, ZU) ) .

Do ponto de vista de simulagdo, esse resultado mostra que basta gerar X,Y ~ A(0,1) inde-
pendentes (e.g. via Box-Muller) e aplicar a transformacdo acima. O algoritmo é:

1. Gere X ~ N(0,1).
2. Gere Y ~ N(0,1) independentemente.

3. Calcule
Z=1X, W=pX+4/1-p%Y.

4. O par (Z, W) tem distribui¢do Normal bivariada com matriz de covariancia X.

Generalizando para normal multivariada

No caso bivariado, construimos

z 1 0 X
- , X,Y ~ N(0,1) independentes.
w o V1-p2) \Y

Chamando a matriz de transformacdo de A, temos

()-40) - o)

Como X, Y sdo independentes com varidncia 1, temos

con((2)) = aco{ (2] )47 = a7

Fazendo as contas,

oo ) i) 6 )
"o v o vime) T\ 1)

que é exatamente a matriz de covaridncia da Normal bivariada desejada.
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No caso geral em d dimensodes, seguimos a mesma ideia. Seja
X=(X1,..., Xg) " ~ N0, 1),
um vetor de Normais independentes. Para qualquer matriz A € R?*9, definimos
Z = AX.

Entéo
Cov(Z) = ACov(X)A" = AL;AT = AAT,

Portanto, dado ¥ simétrica definida positiva, basta encontrar A tal que X = AAT. Assim,
podemos gerar
Z ~ Ny(0,%).

Se quisermos uma média nao nula yu € R?, basta considerar
Z=u+ AX.

Para encontrar A a partir de uma matriz de covariancia ¥ simétrica definida positiva, existem

diferentes decomposi¢des possiveis:
¢ Decomposicao de Cholesky: escreve-se
Y=LLT,
onde L ¢ triangular inferior. Neste caso, podemos tomar A = L.

¢ Decomposicdo espectral: escreve-se
L =QAQ",

onde Q é ortogonal e A = diag(A4,...,A;) contém os autovalores de . Como X é definida
positiva, A; > 0. Assim, podemos tomar

A =QAY?,

com

A2 = diag(\/A1, ...,/ Ag).

* Outros métodos: em aplicagdes numéricas, também se pode usar decomposicdes de tipo
QR ou fatoragdes aproximadas, dependendo da estabilidade computacional desejada.

Exemplo 8 (Simulacdo de Normal trivariada). Considere o vetor aleatério (21,75, Z3)T ~ N3(0,%)
com média nula e matriz de covaridncia

1 08 03
=108 1 05
03 05 1
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Para gerar amostras desse vetor, sequimos a ideia de representar uma Normal multivariada como
transformagio linear de Normais independentes. Seja

X = (X1, X2, X3) " ~ N3(0,13),

isto é, X1, Xa, X3 independentes N'(0,1). Se encontrarmos uma matriz L tal que

=LL",
entdo
Z=1LX
terd distribuicdo N3(0,%).
Vista 1 (elev=20, azim=30) Vista 2 (elev=20, azim=120) Vista 3 (elev=80, azim=30)

No caso desta matriz, a decomposigio de Cholesky fornece

1 0 0
L=108 0.6 0 p
0.3 0.566 0.768

de modo que, se gerarmos X1, Xo, X3 ~ N (0,1) independentes e calcularmos

7 X4
Zz =L X2 ’
Z3 X3

obtemos um vetor Normal trivariado com a covaridncia desejada.

3.5.3 Distribuic¢do Qui-quadrado

A distribuigdo qui-quadrado surge naturalmente como uma transformagao de varidveis normais

independentes.

Sejam Z, ..., Z s N(0,1). Definimos

i=1

Dizemos que Q segue a distribuicdo qui-quadrado com k graus de liberdade, denotada por

Q~ X
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A densidade dessa distribuigdo pode ser derivada observando que Z? ~ I'(3,2), e que a soma

de varidveis Gama independentes com mesma escala também é Gama. Assim,
k
Q~1(%2).
Logo, a densidade é

1 k
3 71671]/2’

f(q) = 271 (#/2) ] q> 0.

Os principais momentos sao

E[Q] =k, Var(Q) = 2k.

Essa distribui¢do aparece com frequéncia em estatistica, por exemplo em testes de hipoteses e
intervalos de confianga, pois estatisticas do tipo “soma de quadrados de erros padronizados”

tém exatamente essa forma.

Simulando a qui-quadrado via soma de Normais

A defini¢do da distribui¢do qui-quadrado ja fornece um método direto de simulagdo. Seja k € IN
o nimero de graus de liberdade. Gere varidveis independentes

71,72, Zx K N(0,1).
Entéo ]
Q=) 7 ~ xi
i=1

O algoritmo é:

1. Fixe k € IN.

2. Gere Zy, ..., Z; """ N(0,1).

3. Retorne Q =YX, Z2.

Esse procedimento é simples e mostra claramente a origem da distribuicdo qui-quadrado
como soma de quadrados de Normais padrdo. Além disso, destaca a ligagdo entre a x7 e a
distribuicdo Normal, que serd essencial para a construcao de outras distribui¢des classicas, como
a t de Student e a F de Fisher.

Simulando a qui-quadrado via Gamma

Outra forma de simular uma variavel X% é usar sua equivaléncia com a distribuicdo Gama. Sabe-
mos que

Q~x: — Q~F<§,2>,
isto é, uma Gama com parametro de forma k/2 e escala 2.

Portanto, para simular Q ~ x? podemos simplesmente gerar
Q ~r(52).

O algoritmo é:
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1. Fixe k € N.

2. Gere G ~ F(%, 2).
3. Retorne Q = G.

Esse método é geralmente mais eficiente em termos computacionais, jd& que muitas bibliote-
cas numeéricas possuem rotinas otimizadas para a geragdo de varidveis Gama com parametros
arbitrdrios. Assim, para valores grandes de k, pode ser preferivel usar diretamente a simulacao

via Gama em vez da soma de muitos Normais.

3.54 Simulando a distribui¢do t de Student

A distribuicdo t de Student foi introduzida em 1908 por William Gosset, que trabalhava como
mestre cervejeiro na Guinness. Por restricdes da empresa, ele publicou seus resultados sob o
pseuddnimo Student, dando origem ao nome da distribuigdo. Essa distribui¢do aparece natural-
mente em problemas de inferéncia estatistica, especialmente em testes de hipoteses, mas aqui

nos interessa sua defini¢do e como simuléa-la.

Densidades da distribuicao t de Student

0.40 t(2)
t(5)
- (30)
035 == Normal(0,1)
0.30
0.25

densidade
o
N
o

Seja Z ~ N(0,1) e Q ~ x2 independentes, com v graus de liberdade. Definimos

z
VQ/v

Dizemos que T segue a distribuigdo t de Student com v graus de liberdade, denotada por

T =

T~ t,.

Algumas propriedades ajudam a caracterizar essa distribuicdo: ela é simétrica em torno de
zero, de modo que se T ~ t, entdo também —T ~ t,; no caso particular v = 1, a distribuigdo
t; coincide com a distribuicdo de Cauchy; e quando v — oo, a distribui¢do ¢, converge para
a Normal padrdo N(0,1). Essas propriedades mostram que, com poucos graus de liberdade,
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a t de Student tem caudas mais pesadas do que a Normal, refletindo a incerteza adicional ao
estimar a varidncia. A medida que v cresce, a distribui¢do se aproxima da Normal, tornando-se

praticamente indistinguivel dela.

A intuicdo da férmula pode ser entendida a partir da estatistica de teste para a média de uma

Normal. Se a varidncia 02 fosse conhecida, teriamos
X—p
c/\/n

No entanto, como o2 é geralmente desconhecida, substituimos ¢ pela estimativa amostral S. Um

Z ~ N(0,1).

resultado cldssico mostra que
(n—1)8?

2
o2 Xn-1-

Assim, a estatistica de interesse torna-se

V4
T = " vV=mn-— 1,
vQ/v
o que justifica a definicdo da distribuicdo t. O numerador Z mede a variabilidade da média
padronizada, enquanto o denominador /Q/v introduz a incerteza extra pela estimagdo da vari-

ancia, resultando em caudas mais pesadas.

t(3) em [-10, 10] t(5) em [-10, 10] t(10) em [-10, 10]

0.40 Histograma (simulado) Histograma (simulado) Histograma (simulado)
Densidade tedrica t(3) Densidade teérica t(5) Densidade teérica t(10)

densidade

00—%0.0 -75 =50 =25 0.0 25 5.0 7.5 100 -10.0 =75 =50 =25 0.0 2.5 5.0 7.5 100 -10.0 -7.5 =50 =25 0.0 25 5.0 7.5 16 0
x x x

A proépria defini¢do sugere um algoritmo de simulacdo simples:
1. Fixe o nimero de graus de liberdade v.

2. Gere Z ~ N(0,1).

3. Gere Q ~ )(,2,, independentemente de Z.

4. Retorne T = Z/+/Q/v, que segue a lei t,.



Capitulo 4

Simulacao via Monte Carlo

A ideia fundamental da simulacdo de Monte Carlo é usar amostras aleatérias para aproximar
quantidades numéricas que, de outra forma, seriam dificeis ou impossiveis de calcular analitica-
mente. Em sua forma mais simples, o método baseia-se na Lei dos Grandes Niimeros.

4.1 Estimando médias
Seja X uma variavel aleatéria com distribuigdo f, e desejamos estimar
p=E[hX)].

Gerando Xj, ..., X, independentes de f, definimos o estimador de Monte Carlo:

fin = — zh(xi)~

Pela Lei dos Grandes Ntumeros, fl, — p quase certamente quando n — co. Uma maneira
simples de justificar essa convergéncia é pela desigualdade de Chebyshev. Se Var [h(X)] = 02 < oo,
entao

L0
Var [fi,] = o

Logo, para qualquer € > 0,

Var [fi,] o

P ([fin —p| >¢) < 2 ne2

Portanto, P (|1, — pt| > €) — 0 quando n — oo, mostrando que I, converge para y em probabi-
lidade, o que é precisamente a versado fraca da Lei dos Grandes Ntumeros.

4.1.1 Exemplos

Exemplo 9. Considere a integral

1
I:/ e dx.
0

Embora nio exista uma expressdo analitica simples para essa integral, podemos aproximd-la por simulagdo
de Monte Carlo.

63
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Geramos X1, ..., X, ~ Uniforme(0,1) e usamos a identidade

[=E [e—Xz] .

Assim, o estimador de Monte Carlo é

L1 e
I,== X
n

O valor aproximado da integral é I ~ 0.7468.

Exemplo 10. Considere X ~ N(0,1) e 0 evento A = {X > 1}. Queremos estimar a probabilidade
p=P(X>1).

Geramos Xy, ..., X, ~ N(0,1) e usamos o estimador de Monte Carlo
1 n
pu =~ Y 1{X; > 1}.
i=1

Pela Lei dos Grandes Niuimeros, p, — p quando n — oo.
O valor verdadeiro é
p=1—®(1) ~ 0.1587,

onde ® denota a CDF da normal padrio.

Exemplo 11. Podemos estimar o valor de 7t por simulagdo de Monte Carlo usando uma interpretagio
geométrica.
Considere o quadrado [0,1] x [0,1] e o quarto de circulo de raio 1 centrado na origem, definido por

P4y <1
A drea do quarto de circulo é 1t/4. Assim, se gerarmos pontos (X;,Y;) uniformemente distribuidos no
quadrado, a fragdo que cai dentro do circulo aproxima a razdo entre as dreas, isto é,

niimero de pontos no circulo 7t

niimero total de pontos 4

Logo, o estimador de Monte Carlo é
. 1y 2, 2
i=1

Pela Lei dos Grandes Niimeros, 7t, — 7 quando n — oo,

Exemplo 12. Considere X ~ Uniforme(0,1). Queremos estimar simultaneamente IE [X] e Var [X] por
simulacdo.

Geramos X3, ..., X, independentes e usamos
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Exemplo 13. Considere a integral em duas dimensoes

I= /1 /1 e (P4 dx dy.
0 Jo

Geramos (X;,Y;) ~ Uniforme([0,1]?) e usamos o estimador

N 1 n 2 2

In = — 8_(X1 +Yl ).
n:

i=1

Exemplo 14. Considere X ~ Exponencial(1) e queremos estimar IE [e‘X]. Geramos Xy, ..., X, inde-

pendentes e calculamos
1
n

n
Z e X,
i=1

ﬁn:

N[—=

O valor verdadeiro é E [e=X] =

Exemplo 15. Considere a integral

(e} e—x
I:/ dx.
o 1+x

Essa integral ndo tem forma fechada simples, mas pode ser expressa como uma esperanga sob uma distri-
buigdo conveniente.

Observe que f(x) = e *1y,~q) € a densidade de uma distribui¢do Exponencial(1). Assim, podemos
escrever

0 =X © 1 1 ‘
I'= /0 1 _|_xdx = /0 1 _l_xf(x) dx =E [1_'_)4 , X ~ Exponencial(1).

Logo, podemos estimar I por Monte Carlo gerando Xy, ..., X, ~ Exponencial(1) e calculando

s 1E 1
I =- :
" n§1+K

O valor verdadeiro da integral é aproximadamente I ~ 0.5963.

Exemplo 16. Considere a integral

[— /°° sin(x) .
0

x
Nio hd uma densidade de probabilidade aparecendo explicitamente, mas podemos introduzir uma para
reescrever a integral como uma esperanga.

Escolha, por conveniéncia, a densidade exponencial f(x) = e™*1y,~¢y. Entdo,

_ [®sin(x) , [®sin(x) - [sin(X) ,
I—/O p dx—/o o f(x)dx =E [ Yo X |’ X ~ Exponencial(1).

Assim, a integral pode ser estimada por Monte Carlo sem precisar integrar diretamente uma fungio
oscilatdria:
. 1 Esin(X))

In = —
n Xe=Xi’

g

X; ~ Exponencial(1).
i=1

O valor exato da integral é I = 7 ~ 1.5708.
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4.2 Intervalos de Confianca

Uma estimativa obtida por simula¢do de Monte Carlo é aleatéria. Mesmo quando o estimador
é ndo tendencioso, seu valor varia a cada execug¢do devido a variabilidade amostral. Por isso, é
importante quantificar essa incerteza por meio de um intervalo de confianga.

Seja fl, = 1Y, h(X;) um estimador de Monte Carlo para u = E[h(X)]. Pelo Teorema
Central do Limite,

e (B

onde 02 = Var [h(X)]. Assim, para n grande,

R o
P(’ﬂn—m Szla/2ﬁ> ~1-—ua,

onde z1_,/» é 0 quantil da normal padrao.
Na pratica, a variancia 02 é desconhecida. Usamos a estimativa amostral

= e () )

i=1

Substituindo ¢ por s,, obtemos o intervalo de confianga assintético

Sn
n

,ﬁn + Z1—a/2 \/»

O intervalo representa a faixa de valores plausiveis para y, dada a variabilidade da amostra.
Para um nivel de confianca de 95%, usamos zg 975 == 1.96, obtendo

Sn

NG

fin +1.96

Exemplo 17. Considere novamente a estimativa
[=E [e*XZ} , X ~ Uniforme(0,1).
Queremos construir um intervalo de confianga para I com base em n = 10° simulagoes.

(1) O estimador de Monte Carlo é

A média amostral obtida foi
I, = 0.7472.

(2) O desvio padrio amostral das observagdes e Xl ¢

sp = 0.289.

(3) O erro padrio do estimador é

gp= o — 929 4000914,

Vn 100000
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(4) Pela regra empirica 68-95-99.7, sabemos que:

— cerca de 68% das observagdes estdo dentro de 1 desvio padrdo da média;
— cerca de 95% estdo dentro de 2 desvios padrao;

— e cerca de 99.7% estdo dentro de 3 desvios padrio.

Assim, podemos construir um intervalo aproximado de 95% de confianga usando dois desvios padrio
em vez de 1.96.

(5) O termo de margem é entio

2 x EP =2 x 0.000914 = 0.00183.

(6) O intervalo de confianga é

[0.7472 — 0.00183, 0.7472 + 0.00183 ] = [0.7454, 0.7490].

Em outras palavras, esperamos que cerca de 95% das repetigoes do experimento de Monte Carlo produ-
zam valores de I, dentro de dois erros padrio da média verdadeira. O valor tedrico I = 0.7468 estd de fato
dentro desse intervalo.

Exercicio 25. Ache intervalos de confiangas para todos os exemplos anteriores.
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Capitulo 5

Reducao de variancia

Em um estudo de simulagdo, é comum que se deseje estimar um parametro 6 associado a um
modelo estocéstico. Para isso, o modelo é executado a fim de gerar uma varidvel de saida X, cuja
esperanca é 0 = E[X].
Realizam-se entdo 1 repeti¢des independentes da simulacdo, sendo que a i-ésima repetigdo
fornece o valor X;. A partir dessas observagdes, a estimativa natural de 0 é a média amostral
X=1yx
n g !
Note que X é um estimador nao viesado de 6, de modo que
E[X] = 6.
Assim, o erro quadrético médio do estimador coincide com sua varidncia:

_ Var(X)

MSE(X) = E[(X — 6)?] = Var(X)

Portanto, se for possivel construir um outro estimador ndo viesado de § com varidncia menor
do que a de X, obteremos uma estimativa mais eficiente. Este é o ponto de partida para as

técnicas de redugdo de varidncia que discutiremos a seguir.

5.1 Uso de varidveis antitéticas

Considere o problema de estimar 6 = E[X] por simulagdo. Se gerarmos duas observagdes X e
X», identicamente distribuidas com esperanca 6, uma estimativa natural é a média
X1+ X
B
A varidncia desse estimador pode ser escrita como

0 =

Var(f) = iVar(Xl +X,) = % (Var(Xl) + Var(X,) + 2 Cov(X;, Xz)).
Como Xj e X, ttm a mesma distribuigdo, Var(X;) = Var(X3), segue que
Var(0) = %Var(Xﬂ + %COV(XLXz).
Portanto:

69
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* se X e X, forem independentes, Cov(X;, X2) = 0 e Var(f) = 1 Var(Xy);

* se conseguirmos construir X; e X, de modo que a covaridncia seja negativa, entdo a vari-

ancia de 6 serd ainda menor.

A questdo, entdo, é: como gerar dois valores X; e X, com a mesma distribui¢do, mas negati-
vamente correlacionados?

Suponha que X; seja fun¢do de m ntimeros aleatdrios independentes, isto €,
Xi=h(ly,..., Un),

onde Uy, ..., U, sdo independentes e uniformemente distribuidos em (0, 1).
Observe que, se U ~ U(0,1), entdo também 1 — U ~ U(0,1). Assim, se definirmos

Xo =h(1—=Uy,...,1—Uy),

teremos que X, possui a mesma distribuigdo que Xj.

Além disso, como 1 — U é negativamente correlacionado com U, é razoével esperar que X»
seja negativamente correlacionado com Xj.

Para tornar a ideia mais clara, considere o caso em que X; depende apenas de uma variavel
uniforme. Seja U ~ U(0,1) e uma fungdo monétona crescente / : [0,1] — R. Definimos

X =h(U), Xp=h(1-U).

Note que X; e X, tém a mesma distribui¢do, pois U e 1 — U sdo identicamente distribuidos.
Além disso, se U assume um valor grande, entdo X; = h(U) também serd grande, mas nesse
caso 1 — U sera pequeno, de modo que X, = h(1 — U) sera pequeno. Assim, valores altos de X
tendem a estar associados a valores baixos de X», e vice-versa, o que implica correlagdo negativa.

No caso particular em que h(u) = u, temos
X; =U, Xo=1-U.
Claramente, E[X;] = E[X,] = 3, de modo que
E[X{]E[X,] = 1.

Por outro lado,

]E[XX]—/1u(1—u)du—/1(u—u2)du—1—1—1
R o T2 3 6
Assim,
1 1 1
Cov(Xy, Xp) = 2 = 1 = =15 <0,

mostrando explicitamente a correlacdo negativa entre X; e X,. Esse raciocinio se estende natural-

mente para fungdes 1 monétonas em vdrias varidveis. Sejam Uy, ..., U, varidveis independentes

uniformes em (0,1) e definamos

X =h(Uy,..., Uy, Xo=h(1—1U,...,1—Upy),
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com h crescente em cada coordenada.
Nesse caso, X; é uma fungdo crescente do vetor (Uy, ..., Un), enquanto X, é decrescente.
Considerando
g(ul, ey Um) = —Xz,

vemos que ¢ também é crescente em cada coordenada.

Ora, quando duas fun¢des de um mesmo conjunto de varidveis independentes sdo monéto-
nas no mesmo sentido (ambas crescentes ou ambas decrescentes), seus valores tendem a variar
em conjunto, de modo que a covaridncia é ndo-negativa. Aplicando esse raciocinio a Xj e g,
concluimos que

COV(Xl, —Xz) Z 0,

o que implica
COV(Xl,Xz) S 0.

Portanto, para qualquer fungdo & crescente em cada coordenada, o par (Xi, X») é negativa-
mente correlacionado, e o uso de varidveis antitéticas reduz (ou, no pior caso, ndo aumenta) a

variancia do estimador.

Em resumo, o método das varidveis antitéticas consiste em explorar a correlagdo negativa entre
pares de simulagdes para reduzir a variancia do estimador. Em vez de gerar duas réplicas inde-
pendentes X; e X, construimos o par de forma que ambas tenham a mesma distribuigdo, mas
sejam negativamente correlacionadas. A varidvel antitética é dado por

X — X1+ Xz
2 7
o qual satisfaz E[X'] = 6, mas possui varidncia menor ou igual a do estimador baseado em

amostras independentes.

Um algoritmo simples para aplicar o método pode ser descrito da seguinte forma:

1. Gere Uy, ..., Uy ~ Uniforme(0,1) independentes.
2. Calcule Xy = h(Uy, ..., Uy).

3. Calcule Xp = h(1—Uy,...,1—Uy).

4. Defina a variavel antitética como

_X1—|-X2

X/
2

Sempre que utilizamos o método da inversdo para gerar varidveis aleatdrias, podemos aplicar
diretamente a técnica das varidveis antitéticas. De fato, se U ~ U(0,1) gera a varidvel desejada
via a transformagdo X = F~!(U), entdo 1 — U também é uniforme em (0,1), e portanto X' =
F~1(1 —U) tem a mesma distribuigdo de X.

A grande vantagem é que, em vez de gerar duas variaveis independentes U; e U, para obter
duas amostras de X, basta gerar uma tnica varidvel uniforme U. Com ela, obtemos simultanea-
mente o par antitético (X, X’), o que ndo apenas economiza custo computacional como também

pode reduzir a variancia do resultado final.
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Exemplo 18. Considere a geracido de uma varidvel aleatéria exponencial com pardmetro A > 0. Pelo
método da inversdo, se U ~ U(0,1), entdo

1

X:)\

log(U)

seque a distribuicdo Exp(A).
Para aplicar o método das varidveis antitéticas, em vez de gerar duas varidveis independentes Uy, Uy ~
U(0,1), usamos o par (U,1 — U). Assim, obtemos

1 1
X = —Xlog(U), Xy = —Xlog(l —Uu).

Definimos, entdo, a varidvel final como a média

. X1+ Xz

Z
2

O algoritmo é:
1. Gere U ~ Uniforme(0,1).
2. Calcule X1 = —+log(U).
3. Calcule X, = —1log(1—U).

4. Defina Z = (X1 + X2)/2.

Comparacao das médias de duas exponenciais (n=100000)

[ Média (independente)
[ Média (antitética)
4+
o 31
ke
©
RS
(%]
&
Q21
1 -
0 m Il 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Valor

No método independente, como cada varidvel exponencial pode assumir valores proximos de zero
(quando U — 1), a média também pode se aproximar de zero. Jd no método antitético temos, supondo
A=1,

1
Z=—3log (U(1—1U)).
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Como U(1 —U) < 1/4, seque que
Z > %log4 = log2 ~ 0.693.

Ou seja, a varidvel construida por antitéticos nunca assume valores menores que log 2.

Esse resultado explica por que, ao comparar os histogramas, a média independente pode assumir valores
proximos de zero, enquanto a antitética tem suporte a partir de log2. Além disso, no experimento com
n = 10°, o erro quadritico médio foi aproximadamente 0.505 no caso independente e apenas 0.174 no caso
antitético, mostrando a expressiva redugdo de varidncia obtida pelo método.

Exemplo 19. Considere a integral
I= / log(1+ x*)e ™ dx.
0

Observe que o termo e~* corresponde a densidade de uma varidvel X ~ Exp(1). Assim, podemos reescrever
a integral como
I=Ellog(1+X%], X~ Exp(1).

Portanto, a solugdo via Monte Carlo é imediata: basta gerar amostras X; ~ Exp(1), calcular log(1 +
X?) e tirar a média. O algoritmo segue 0s passos:

1. Gerar U; ~ U(0,1).
2. Transformar em X; = —log(U;).
3. Calcular log(1 + X?) e tirar a média.

Para reduzir a varidncia, podemos usar varidveis antitéticas. Nesse caso, ao invés de gerar apenas Uj;,
usamos também 1 — Uj;. Isso produz

Xi = —log(ul'>, Xl/ = —log(l - ui)/

e entdo o estimador final é

N
T = — Y- 4 (log(1+ X7) + log(1+ (X))?)).
i=1

Note que nem sempre varidveis antitéticas reduzem a varidncia: essa técnica é mais eficaz quando a
fungdo aplicada as amostras (aqui, log(1 + x2)) é monotonica, pois nesse caso os pares (U,1 — U) tendem
a gerar correlagdo negativa entre os valores simulados.

Exemplo 20. Considere a integral
b 1 2
= eF ——e ¥/ 2 dx.
J /foo V27T
O integrando envolve a densidade da normal padrio N(0,1), logo podemos escrever

] =E[¢?], Z~ N(0,1).

O valor exato é conhecido:
] =el2

Para estimar | via Monte Carlo, seguimos os passos:
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1. Gerar Z; ~ N(0,1).

2. Calcular 4.
3. Tomar a média sobre as n amostras.

Note que a distribuicdo normal é simétrica em torno de zero, isto é, Z ~ N(0,1) implica que também
—Z ~ N(0,1). Assim, para cada Z; gerado, podemos considerar o par (Z;, —Z;) e formar o estimador

# Ivi(z -z
]ant—niZ;z(e +e )

Z

Neste caso, como e* é uma fungﬁo monotdnica crescente, os valores e“i e e~ i tendem a se compen-

sar, gerando correlagdo negativa e uma varidncia muito menor na estimativa. O ponto essencial é que a
esperanga se mantém inalterada, mas o uso da antitética torna o estimador mais eficiente.

5.2 O uso de variaveis de controle

Suponha que desejamos estimar
6 = E[X],

onde X é o resultado de uma simula¢do. Agora suponha que exista outra varidvel Y cuja espe-
ranga é conhecida, digamos
E[Y] = py.

Entdo, para qualquer constante c, o estimador
Z=X+c(Y—puy)

é ndo-viesado para 6, pois E[Z] = 0.
A variancia deste estimador é

Var(Z) = Var(X + c(Y — py)) = Var(X) + c¢*Var(Y) + 2cCov(X,Y).

Minimizando em relagéo a ¢, obtemos

Cov(X,Y)
Var(Y)

*

Substituindo este valor na expressdo da variancia, resulta

~ Cov(X,Y)?

Var(Z) = Var(X) Var(Y)

A varidvel Y é chamada de varidvel de controle. A intuicdo é a seguinte: se X e Y sdo positi-
vamente correlacionados, entdo ¢* < 0. Nesse caso, quando Y assume um valor acima da sua
média conhecida py, é provdvel que X também esteja acima de sua média 6. Para compensar
esse excesso, reduzimos o valor de X ao somar ¢(Y — py) com ¢ < 0. De forma andloga, se Y
estiver abaixo de sua média, provavelmente X também estard, e nesse caso o termo c(Y — py)
corrige o valor de X para cima. Quando X e Y sdo negativamente correlacionados, o raciocinio



5.2. O USO DE VARIAVEIS DE CONTROLE 75

é simétrico: nesse caso c* > 0, e se Y estd acima de sua média, é provavel que X esteja abaixo;
o termo c(Y — py) corrige entdo X para cima. Do mesmo modo, quando Y estd abaixo de uy, X
tende a estar acima, e a correcdo ajusta X para baixo. Assim, tanto em correlacdo positiva quanto
em correlacdo negativa o método funciona: o que importa ndo é o sinal, mas sim a intensidade
da correlagao.

Esse ajuste reduz a varidncia porque parte da flutuacdo de X pode ser explicada pela sua
correlagdo com Y. O desvio de Y em relagdo a sua média atua como um indicador do desvio
de X, e ao subtrair essa componente previsivel obtemos um estimador mais estdvel. Do ponto
de vista matematico, a variancia de X é decomposta em uma parte explicdvel pela covariancia
com Y e uma parte residual; ao introduzir a varidvel de controle, eliminamos a parte explicavel
e restamos apenas com a parte residual, que é menor. Assim, a varidncia do estimador nunca

aumenta e, se p(X,Y) # 0, ela é estritamente reduzida.

Correcao de varios pontos via variavel de controle
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Além disso, ao dividir pela variancia de X, obtemos

g
onde
o(X,Y) = Cov(X,Y)

/ Var(X) Var(Y)

é a correlacdo entre X e Y. Isso mostra que a reducgdo relativa de varidncia obtida é de 100 -
p(X,Y)? por cento, independentemente de a correlagdo ser positiva ou negativa.
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Na prética, Cov(X,Y) e Var(Y) ndo sdo conhecidos de antemdo e precisam ser estimados a
partir dos dados simulados. Se n simula¢des sdo realizadas, gerando pares (X, Y;), podemos
calcular

Cov(X,Y)

Zn: -Y), Var — Zn:

i=1 i=1

e entdo definir
o COV(X Y)

B Var(Y)

O estimador final com variavel de controle é dado por

A 1& .
Ouwt = 1 (Xio+ € (4= o).
O procedimento pode ser resumido no seguinte algoritmo:
1. Gerar amostras (X, Y;) da simulagdo, i =1,...,n.
2. Calcular X e Y.
3. Estimar Cov(X,Y) e Var(Y).
4. Determinar & = —@(X,Y) /\//'e;‘(Y).
5. Formar o estimador .1 = L Y7 (X; + ¢ (Y; — py)).

Exemplo 21. Considere a integral

1
9:/ eldx =e—1.
0

Podemos reescrevé-la como uma esperanga, notando que se U ~ U(0,1) entdo
0 = E[eY].

Assim, definindo X = eY, podemos estimar 6 por Monte Carlo a partir da média amostral de X.
Agora considere a varidvel Y = U, cuja esperanga é conhecida, uy = E[U] = 0.5. Como X = €Y
e Y = U sdo fortemente correlacionados positivamente, podemos utilizar Y como varidvel de controle. O
estimador controlado é dado por
Z=X+c"(Y—py),

onde
*

Cov(X,Y)
Var(Y)
Na pritica, basta gerar pares (X;,Y;) a partir de U; ~ U(0,1), calcular as estimativas amostrais de
Cov(X,Y) e Var(Y) para obter ¢*, e entdo construir o estimador

Octn = % i (Xz' + (Y - VY)>-

i=1
A correlagdo positiva entre X e Y faz com que o desvio de Y em relagdo a sua média indique a diregdo

do desvio de X em relagio a 0. O termo de ajuste c*(Y — py) corrige esse efeito, reduzindo drasticamente
a varidncia do estimador. Na simulagdo, observamos que a varidncia caiu de aproximadamente 0.24 (sem
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Correlagao entre X e Y Estimador simples Estimador com variavel de controle

--- Est:1.717 --- Est:1.718
— True: 1.718

— True: 1.718

0.0 0.2 0.4 0.6 0.8 1.0 01.00 125 150 175 2.00 225 250 275

controle) para 0.004 (com controle), com estimativas muito mais concentradas em torno do valor verdadeiro
e—1~1.718.

O procedimento pode ser resumido no seguinte algoritmo:
1. Gerar n amostras U; ~ U(0,1),i=1,...,n.
2. Calcular X; = e e Y; = U,.
3. Estimar Cov(X,Y) e Var(Y) a partir dos dados.
4. Determinar ¢* = —(fo\v(X, Y)/Var(Y).

5. Construir o estimador controlado

= 3 (Xt (=),

i=1
5.3 Reducao de Variancia por Condicionamento

Uma técnica bastante util para reduzir a variancia em simulagdo é o uso de condicionamento. A

ideia se baseia diretamente na férmula da variancia condicional:
Var(X) = E[Var(X | Y)] + Var(E[X | Y]).
A demonstragdo é simples. Por definicdo,
Var(X) = E[X?] — (E[X])".
Pela propriedade da esperanca condicional,
Var(X) = E[E[X* | Y]] - (E[E[X | Y]])*.

Agora, observe que
E[X? | Y] = Var(X | Y) + (E[X | Y])*.

Portanto,
E[E[X? | Y]] = E[Var(X | Y)] + E[(E[X | Y])?].

Substituindo de volta,

Var(X) = E[Var(X | Y)] + (E[(E[X | Y])?] - (E[X]?),
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e o termo entre parénteses é precisamente Var(E[X | Y]).

Assim, chegamos a decomposigdo
Var(X) = E[Var(X | Y)] + Var(E[X | Y]).
Como E[Var(X | Y)] > 0, segue que
Var(X) > Var(E[X | Y]),

portanto, podemos utilizar Z = E[X | Y| como varidvel para simularmos, j& que E[Z] = E[X].

Uma forma de entender por que o condicionamento reduz a variancia é pensar no problema
de estimar a altura média de uma populacdo. Se representarmos por X a altura de uma pessoa
escolhida ao acaso, cada sorteio pode resultar em valores muito diferentes, como um homem de
1,90 m ou uma mulher de 1,55 m, e essa variabilidade individual é refletida em Var(X). Agora,
suponha que introduzimos uma varidvel Y que indica o grupo ao qual a pessoa pertence, por
exemplo, sexo masculino ou feminino. Em vez de registrar a altura individual X, passamos a
registrar a média do grupo correspondente, isto é,

Z=E[X]|Y]

Se a pessoa sorteada for um homem, usamos a média de alturas dos homens (digamos, 175 cm);
se for uma mulher, usamos a média das mulheres (digamos, 162 cm). Note que a média global
continua correta: metade das vezes registramos 175, metade das vezes 162, o que resulta em
168,5 cm, exatamente a média real da populacéo.

A identidade

Var(X) = E[Var(X | Y)] 4+ Var(E[X | Y])

mostra como essa substitui¢do reduz a varidncia. O primeiro termo corresponde a variabilidade
dentro de cada grupo (diferengas entre individuos do mesmo sexo), enquanto o segundo termo
corresponde a variabilidade entre as médias dos grupos (diferenga entre a média dos homens e a
das mulheres). Quando usamos diretamente X, ambos os termos estdo presentes; quando usamos
E[X | Y], eliminamos o primeiro termo e ficamos apenas com a variabilidade entre grupos.
Assim, o estimador permanece ndo-viesado, mas com menor varidncia. Em outras palavras,
condicionar equivale a substituir um individuo ruidoso pela média de seu grupo, preservando a
esperancga e reduzindo a dispersdo.

O procedimento para estimar 6 = [E[X] via condicionamento pode ser descrito da seguinte
forma:

1. Identificar uma varidvel auxiliar Y em relagdo & qual seja possivel calcular E[X | Y] de

forma analitica ou computacionalmente simples.
2. Gerar amostras Y1, Y>,...,Y;, da distribuicdo de Y.

3. Para cada Yj, calcular Z; = E[X | Yj].
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4. Usar a média amostral
n

A1

como estimador de 6.

Esse algoritmo gera um estimador ndo-viesado de 6, mas com variancia reduzida em compa-

racdo ao estimador usual baseado diretamente em X.

Exemplo 22. Queremos estimar 7 via simulagdo. Podemos gerar dois miimeros aleatdrios Uy, Uy ~
Uu(o,1) e definir
Vi=2U,—1, i=1,2,

de modo que V1, Vo ~ U(—1,1). Se considerarmos
I=1{V}+V§ <1},

entdo E[I] = 7t/4, pois a probabilidade de um ponto uniforme em [—1,1)? cair dentro do circulo unitdrio
é exatamente a razdo entre a drea do circulo e a drea do quadrado. Assim, uma estimativa usual seria

n
Y I
i=1

T =

SUITS

Comparacao: sem vs. com condicionamento

1.0t
0.8
0.6
5 Sem condicionamento (0/1)
§ —— Com condicionamento (V1 —v?)
0.4¢}
0.2}
0.0 0O 3¢ S0 - 3808 903 08¢ 3¢ B S ASMOICMBE
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
%41

Podemos, porém, melhorar esse estimador aplicando a técnica de condicionamento. Em vez de usar 1

diretamente, consideremos E[I | V1]. Temos
E[I|Vi=0]=P(Vf+V;<1|Vi=0).

Isso equivale a
E[I | Vi =v] =P(VF <1-12%).
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Como V, ~ U(—1,1) e é independente de V;, temos

P(Vi<1-v*)=P(—V1-02<V, <V1-22).

Portanto,
V1-v2 1
E|ll|V; = = — — 1— 2‘
[I| V1 =0 /—1—U2de vV v

Assim, obtemos o estimador condicionado

Z=1\/1-V2

que satisfaz IE[Z] = 71/4, mas tem varidncia menor do que 1.
Finalmente, se U ~ U(0,1), temos V; = 2U — 1, e portanto

Z=1/1-(Uu-1)2

Logo, podemos simular 7t a partir do estimador

4 n
ﬁ:EZ 1—-(2u; —1)?,
i=1
que é mais eficiente do que usar diretamente o indicador I.

Exemplo 23. Considere a sequinte modelagem para a altura em uma populagio. Seja Y ~ Bernoulli(p)
a varidvel que indica o sexo do individuo, em que Y = 0 representa mulher e Y = 1 representa homem.

Condicionalmente a Y, a altura X tem distribuicdo normal
X|Y=0~N(up07),  X|Y =1~ N(pm,0y).
Nosso objetivo é estimar a média da populagio,

0 =E[X] = (1—p)us+ ppm.
Se gerarmos individuos completos, isto é, sorteando Y e depois X | Y, o estimador de Monte Carlo é
1

n .ZXi’

R n
Gsimples =
i=1

que é ndo viesado para 0, mas apresenta varidncia

Var(X) = (1= p)of + pog, + p(1 = p) (1w — pf)*.

Em vez de usar diretamente X, podemos aplicar condicionamento. Nesse caso, registramos Z = E[X |
Y], ou seja, s se Y =0 e py se Y = 1. O estimador correspondente é

que também é ndo viesado para 6, mas com varidncia

Var(Z) = p(1 = p)(m — ps)%,

estritamente menor do que Var(X), pois elimina a variabilidade interna de cada grupo (U} e 02,). Assim,
ao invés de considerar a altura ruidosa de cada individuo, utilizamos a média condicional do grupo, que é
mais estdvel e resulta em um estimador mais eficiente.



Capitulo 6

Amostragem por importancia

Considere uma variavel aleatéria X com densidade f(x). Nosso objetivo é calcular

X)) = [ h(x)f(x)dx

Em alguns casos, uma simulagdo direta de X ~ f pode ser ineficiente:
* pode ser dificil gerar amostras segundo f;

e avaridncia de h(X) sob f pode ser grande;

* ou ainda uma combinacdo desses fatores.

Uma alternativa é escolher uma outra densidade g(x) tal que f(x) = 0 sempre que g(x) = 0.

Nesse caso, podemos reescrever

9_/h f( dx—]Eg[ (X)fEXﬂ,

onde [E; denota esperanga em relagdo a densidade g.

oQ

Assim, se gerarmos Xi, ..., X; ~ g, um estimador natural é

Se a densidade instrumental ¢ for bem escolhida, a variancia do peso h(X)f(X)/g(X) pode
ser bem menor do que a variancia de h(X) sob f, resultando em uma estimagdo mais eficiente.

Note que f(x) e g(x) representam as probabilidades relativas de se observar x quando X ~ f

ou X ~ ¢. Quando X ~ g, em geral a razdo f(x)/g(x) é menor que 1, mas como

£ [100] -1,

8(X)
ela ocasionalmente assume valores grandes, podendo gerar alta variancia.
A ideia central da amostragem por importancia é escolher ¢ de modo que nesses pontos onde
f(x)/g(x) é grande, a fungdo h(x) seja pequena (ou mesmo nula). Dessa forma, o produto
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permanece controlado, evitando explosdes na variancia.

Esse raciocinio mostra por que a técnica é especialmente eficaz na estimagdo de probabilida-
des raras. Nesse caso, i(x) é uma fungdo indicadora de um conjunto A pouco provével sob f. Se
escolhermos ¢ de modo que A seja mais frequente, entao:

® para x € A, temos h(x) =1 e arazdo f(x)/g(x) é moderada;
® para x ¢ A, temos h(x) = 0, logo ndo importa se f(x)/g(x) é grande.

Assim, o estimador se torna muito mais estdvel e com varidncia reduzida, o que torna a

amostragem por importéncia uma ferramenta poderosa para lidar com eventos raros.

6.1 Densidades Inclinadas (Tilted Densities)

Uma questdo central em amostragem por importancia é a escolha da densidade instrumental
¢(x). Uma familia bastante util é a das densidades inclinadas, definidas a partir da fungdo geradora
de momentos.

Seja X ~ f uma varidvel aleatéria com fungdo geradora de momentos

M(t) = Ele™X] = /et"f(x) dx.
Definicao 1. A densidade inclinada de f, associada ao pardmetro t € R, é definida por

_ ef(x)
ft(x) - M(t) .

Intuitivamente, a densidade f; d4 mais peso a valores grandes de X quando t > 0 e mais peso
a valores pequenos quando t < 0. Em muitos casos, f; pertence a mesma familia paramétrica de

f, mas com parametros modificados.

Alguns exemplos:

* Normal. Se X ~ N(u,0?), entdo f; é N(u + to?,0?). Nesse caso, o tilt desloca a média,
concentrando a massa de probabilidade a direita quando t > 0 e a esquerda quando ¢ < 0.

e Exponencial. Se X ~ Exp(A), entdo f; é Exp(A —t), vélido para t < A. Aqui, o tilt altera o
comportamento da cauda: para t > 0, a distribuigdo decai mais rdpido (cauda mais leve),

enquanto para t < 0 a cauda se torna mais pesada.

e Gama. Se X ~ Gamma(«a, B), entdo f; ¢ Gamma(wa, f — t), vélido para t < B. Assim como
na exponencial (caso particular da gama), o tilt controla a espessura da cauda, deixando-a
mais leve quando ¢ > 0 e mais pesada quando ¢ < 0.

* Poisson. Se X ~ Poisson(A), entdo f; é Poisson(Ae!). Nesse caso, o tilt modifica a média
exponencialmente: para t > 0, a distribuicdo se desloca para valores grandes, enquanto
para t < 0 se concentra em valores pequenos.
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e Binomial. Se X ~ Binomial(n, p), entdo f; é Binomial(n, p;) com
pe!

P Tyt pet

Aqui, o tilt altera diretamente a probabilidade de sucesso: quando t > 0 temos p; > p, o
que forca mais sucessos, e quando t < 0 temos p; < p, forcando mais fracassos.

Exercicio 26. Prove as afirmagoes acima.

Exemplo 24 (Estimando probabilidades raras). Sejam Xi, ..., X, varidveis aleatdrias independentes
com densidades (fungodes de massa ou de probabilidade) f;, parai =1,...,n. Defina

Nosso objetivo é estimar a probabilidade de que S seja maior do que um limiar a, onde a >> , isto é,
0= ]P(S > El) = IE[l{S>a}} .

Quando a é muito maior que a média y, esse evento € raro, e portanto uma simulagdo direta via Monte
Carlo ingénuo é ineficiente, pois apenas uma fragdo infima das amostras contribui para o cdlculo do esti-
mador. Uma alternativa é utilizar a técnica de amostragem por importincia com densidades inclinadas.

Seja

fir(x) = :/Ij?((t))' M;(t) = E[e™],

a densidade inclinada de X;, onde t > 0 é um pardmetro comum a todas as varidveis. Ao simular cada X;
segqundo f;;, obtemos que

0= IEt 1{S>a} exp(—tS) HMi(t)
i=1

onde E; denota esperanga sob as densidades inclinadas.
A partir dessa representagio, segue naturalmente um estimador de Monte Carlo:

1Y
0= N; (st >a}exp —tS HM
onde SU) =y | ) e cada X( D ¢ simulado de fit

A escolha de t é cruczal. se for muito pequeno, a distribuicdo inclinada pouco difere da original e o
evento {S > a} continua raro. Se for muito grande, os pesos podem se tornar instdveis, aumentando a
varidncia. O critério usual é escolher t de forma que

]Et[S] =~ a,

ou seja, deslocar a média da soma sob a medida inclinada para proximo do limiar a. Dessa forma, amostras
sdo concentradas justamente nas regides que mais contribuem para o evento raro, aumentando a eficiéncia
do método.

O algoritmo pode ser resumido da seguinte forma:
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1. Escolha t > 0 de modo que E;[S] ~ a.

2. Paraj=1,...,N:

(@) Gere ng), Ny Xr(zj ) independentemente segundo as densidades inclinadas f; ;.
(b) Calcule SU) =y Xi(j)'
(c) Associe o peso

WU =165,y exp(—tSU) [T Mi(t).
i=1

3. Estime 0 por
1N 0
= ]
0 N ]E 1W .

No caso particular em que cada X; ~ N(0,1), temos que a soma S = YI'  X; é normal N(0,n).
Quandon =1, por exemplo, estimar IP(S > 5) ¢é um evento extremamente raro, pois o valor exato dessa
probabilidade é

0 =1P(S>5)~287x107".

Um procedimento de Monte Carlo ingénuo, baseado apenas em amostrar de N(0,1), é ineficiente: em uma
simulagido com N = 200,000 repeticdes, a estimativa obtida foi de aproximadamente 5.0 X 10~ um valor
que ndo coincide com o verdadeiro devido a raridade do evento.

Aplicando a técnica de densidades inclinadas, obtemos que a tilted density é

A = SR M = e (38),

o que implica que f; é a densidade de uma normal N(t,1). Ao escolher t = 5, a distribuicdo inclinada
desloca a média exatamente para o limiar de interesse. O peso associado a cada amostra é dado por

W = 1;g.5) exp(—tS + 17

Densidade original, tiltada e fungdo indicadora do evento S >5 1e—6 Termo h f/g
Lof— no1) A i — hflg com () =1¢x-5
-—- TitN(s, 1) 35

—_— 1sssy

o o °
B o ©

densidade / indicador
valor

o
N

0.0

Nesse caso, a estimativa via amostragem por importincia com N = 200,000 simulagdes foi
Ouie ~ 2.87 x 1077,

em perfeito acordo com o valor tedrico.
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6.2 Desigualdade de Chernoff

A inclinagdo exponencial (exponential tilting) introduzida anteriormente também pode ser enten-
dida como uma mudanga de medida aplicada diretamente as probabilidades. Essa ¢, essenci-
almente, a mesma ideia usada no exemplo normal, em que substituimos f = A(0,1) por sua
versdo inclinada fy = N (A, 1), de modo que o evento raro {X > 10} se torne tipico sob a nova
distribuicao.

Seja X uma varidvel aleatéria com densidade f, e defina a densidade inclinada:

Ax
fr(x) = eZ{A()x) Z(A) = Ey[eM).

Podemos entdo expressar qualquer probabilidade como uma esperanga sob essa nova medida:

B (O W 0 D
PXza)= [ f&dx= | e ]EA[fA(?Ql{XE }}

Usando a defini¢do de f,, a razdo de verossimilhanca é

f(X) _ o AX+(A)
A (X) '

e portanto
P(X > a) = E, [e’“”‘pwl{x > a}} = Z(ME, [ﬂxl{x > a}} .

Essa identidade expressa a probabilidade de um evento raro como uma esperanga sob a me-
dida inclinada f,. Em principio, essa igualdade poderia ser usada para estima¢dao — poderiamos
simular de f) e calcular a média dos pesos e *XT¥(M1{X > a}, exatamente como em importance
sampling. No entanto, se o objetivo ndo é estimar, mas limitar a probabilidade, podemos substituir
o peso aleatério e X por um limite superior deterministico que vale no evento de interesse.

No evento {X > a}, temos e "X < ¢=*. Aplicando essa desigualdade dentro da esperanga
obtemos:

P(X > a) < e ME,[e?WM1{X > a}] = e MNP, (X > a).

Como P, (X > a) < 1, chegamos finalmente a
P(X >a) <exp(—Aa+1p(A)).

Esse passo transforma a identidade exata do importance sampling em um limite superior deter-
ministico — a Desigualdade de Chernoff. Mostra que a mesma inclinacdo exponencial usada para
redugdo de variancia em estimac¢do Monte Carlo também fornece uma maneira analitica elegante
de controlar probabilidades de eventos raros.

O limite obtido acima depende do parametro A. Diferentes valores de A correspondem a
diferentes distribui¢des inclinadas f) e, portanto, a diferentes mudancas de medida. Para obter
0 limite mais apertado, minimizamos o expoente:

P(X >a) < }r;f)exp( —Aa+p(A)).

O valor 6timo A* satisfaz a condigdo de primeira ordem:

Y1) =a.
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Para entender a condicdo para A* 6timo, calculemos a derivada da fungdo log-particio. A
partir de

$(1) = log [ e f(x)dx,
derivando em relagdo a A obtemos:
[ xeMf(x)dx
— [eMf(x)dx
Essa expressdo pode ser reconhecida como a média de X sob a densidade inclinada f,(x)

M f(x):

¥'(A)

(M) = Ea[X].
Portanto, a derivada da funcado log-parti¢do coincide com o valor esperado de X sob a inclinagdo

exponencial. No valor 6timo A*, temos:
E\[X] = ¢'(A") =a,

0 que significa que, sob a inclinagdo 6tima, a média de X é igual ao limiar a. Em termos proba-
bilisticos, isso mostra que a distribuicdo f)+ torna o evento {X > a} tipico — seu valor médio ja
se encontra na fronteira da regido rara que estamos tentando estudar.

6.3 Variancia sob Inclinacao Exponencial

Ja vimos que a medida inclinada f, torna a regido de interesse, como X > g, tipica. A inclina¢do
6tima é alcangada quando ¢'(A) = a, pois ¥'(A) = E, [X] é a média de X sob a distribuigdo
inclinada. Em outras palavras, o parametro A desloca a distribui¢do de modo que sua esperanca
coincida com o ponto que queremos estimar.

Para avaliar a qualidade dessa reponderacdo, uma quantidade natural a estudar é a vari-
ancia do estimador sob a medida inclinada. Se a distribui¢do inclinada permanece altamente
concentrada em torno de sua média, os pesos do importance sampling sdo estaveis e o estimador
é eficiente. Por outro lado, se a lei inclinada é muito dispersa, os pesos flutuam fortemente e o
estimador sofre com alta varidncia. Assim, a concentracao da distribui¢éo inclinada fornece uma
medida direta da qualidade do estimador de importance sampling.

Essa concentragdo é capturada pela segunda derivada da fungao log-particdo. De fato, a partir
de

P(A) =logE [e"x} ,
temos

AX
=S =,

que representa a média de X sob a distribuigdo inclinada. Derivando novamente,

E [X%2eMX E [XetX
p'(A) = llg[e)‘x]] - ( ]E[[e/\X]]

> = E, [X?] — (E, [X])* = Var, [X].

Portanto, a curvatura da log-parti¢do quantifica quao concentrada é a medida inclinada em torno
de sua média e, consequentemente, quao eficiente serd o estimador de importance sampling.
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Em alguns casos, essa varidncia pode ser uniformemente limitada para todos os valores de
A. Por exemplo, quando X é uma varidvel aleatéria limitada tal que X € [a,b], a variancia sob
qualquer medida inclinada satisfaz
(b—a)

i
De fato, a distancia de X ao ponto médio do intervalo (a,b) é sempre menor que metade do

Var) [X] <

comprimento do intervalo, isto é,
a _—
_a+ b < b a.
2 - 2

(X —m)? < <b;a)2.

Tomando expectativas sob a lei inclinada, obtemos

By [(X - m)?] < (”;“)2-

Além disso, para qualquer constante c,

X

Seja m = %5, Entdo,

Var [X] = minE, [(X ~ ¢)*] < Ey [(X—m)*],

de modo que

Vary [X] < (b;“)z.

Isso mostra que, para qualquer variavel aleatdria limitada, a varidncia sob inclinagdo exponencial
permanece uniformemente controlada. Em particular, a curvatura da fungdo log-particio — que
determina tanto a concentragdo da lei inclinada quanto a estabilidade do estimador de importance
sampling — ndo pode crescer sem limite.

Agora suponha que X é centrada, isto é, E [X] = 0. Entdo, por definigao,

$(0) = log E [eo'x} =0, ¢/(0)=E[X]=0.

Pela expansdo de Taylor de segunda ordem de 1, existe algum 6 € (0, 1) tal que
A2 A? A?
P(A) = 9(0) + 9" (0)A + —-¢"(6) = =-Varg [X] < = sup Vary [X].
2 2 6e(0,M)

Em particular, conhecer o comportamento da variancia sob inclinagdo permite controlar toda
a forma da funcdo log-parti¢do. Se a varidncia inclinada permanece uniformemente limitada,
a curvatura de 1 também ¢é limitada, e os momentos exponenciais de X crescem no maximo
quadraticamente em A.
No caso especial de varidveis limitadas, combinando isso com o limite uniforme sobre a
variancia inclinada obtemos ) )
P(A) < M.
8
Esse resultado mostra que, sempre que a variancia sob inclinacdo exponencial é uniformemente
limitada, a fun¢do log-particdo cresce no maximo quadraticamente em A. O crescimento qua-
dratico da log-particdo é precisamente a marca do comportamento sub-Gaussiano. Na préxima
se¢do, formalizamos essa conexdo e mostramos como ela permite controlar probabilidades de

eventos raros mesmo quando a funcdo log-partigdo exata é desconhecida.



88 CAPITULO 6. AMOSTRAGEM POR IMPORTANCIA
6.4 Variaveis Sub-Gaussianas e Desigualdade de Hoeffding

Suponha que desejamos aplicar inclinagdo exponencial em importance sampling, mas a fungdo
log-particao

() = log E[e™]
é desconhecida ou muito dificil de calcular exatamente. Nesse caso, muitas vezes basta conhecer
um limite superior para P(A). Se pudermos encontrar uma func¢do simples que domina a log-
particdo verdadeira, ainda podemos controlar probabilidades de eventos raros e obter limites
exponenciais.

Por exemplo, suponha que sabemos que

212
P(A) < % VA € R.

Isso significa que os momentos exponenciais de X crescem no méximo como os de uma variavel
normal com variancia 0. Dizemos entdo que X é sub-Gaussiana com parametro de variancia 0.
Recorde que, sob inclinagdo exponencial, a probabilidade de um evento raro pode ser escrita

como
P(X >a) =E, [e‘AXJ"/’(A)l{X > a}} = VW E, [e_)‘Xl{X > a}} :
Se a fungdo log-particdo exata é desconhecida, podemos substitui-la por qualquer limite superior
valido. Usando a condigdo sub-Gaussiana acima, o argumento de Chernoff fornece
o222

P(X > a) < inf e MY < inf e+
A>0 A>0

inimizando o expoente em relacdo a A, obtemos =a , 0 que da
M d t 1 A, obt A* /o2 d

22
P(X>a) < exp(—M) )

Portanto, qualquer varidvel aleatéria cuja fungdo log-particao é limitada por uma fungdo quadra-
tica apresenta cauda do tipo Gaussiana. Mesmo que ndo possamos realizar importance sampling
exato sem conhecer a constante de normalizagdo e a desigualdade acima fornece uma esti-
mativa analitica precisa da probabilidade de evento raro.

Como vimos na se¢do anterior, variaveis limitadas satisfazem um limite uniforme na varidncia
inclinada, e, portanto, sua fungdo log-parti¢gdo cresce no maximo quadraticamente. Isso significa

que qualquer variavel limitada é automaticamente sub-Gaussiana, com parametro

2
o (b—a)
rC =
4
Essa observacgdo leva diretamente a um dos resultados mais fundamentais na teoria das desi-
gualdades de concentracdo, conhecido como Lema de Hoeffding, que formaliza esse fato e fornece
limites exponenciais explicitos para varidveis limitadas.

Teorema 6 (Lema de Hoeffding). Seja X uma varidvel aleatoria tal que X € [a,b] e E [X] = 0. Entdo,
para todo A € R,

A%(b —a)?

SEr—

Em particular, X é sub-Gaussiana com pardmetro de varidncia c* = (b —a)?/4.

P(A) =logE [e)‘X} <
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O lema de Hoeffding implica imediatamente um limite exponencial para a soma de varidveis

limitadas independentes.

Teorema 7 (Desigualdade de Hoeffding). Sejam X;, ..., X, varidveis aleatérias independentes tais que
X; € [aj, bi] e E[X;] = 0 para todo i. Entdo, para qualquer t > 0,

P iXi >t < exp<—2t2> .
=) Yiq (b — a;)?

Demonstragido. Pelo lema de Hoeffding, cada X; satisfaz

E {e)‘xl} < exp(W) .

Como os X; sdo independentes,
E [eAZ?:l Xi] = ﬁ]E [e/\xl} < exp (A i(bi - ai)2> .
i=1 a 8]
Aplicando o limite de Chernoff,
n A2 o
P (H X; > t> < inf exp (—At +3 }:(bi - ai)2> .

Minimizando o expoente em relagdo a A, obtemos

4t
P S—
i1 (b — a;)?

e substituindo esse valor,

Pt (o 25 )
izt <expl =7 |
i=1 P Zi:l(bi - ﬂi)z

o que conclui a prova. O

Essa desigualdade mostra que somas de varidveis aleatdrias limitadas independentes exibem
concentragdo do tipo Gaussiana: suas caudas decaem tdo rapidamente quanto e, com uma
constante determinada apenas pela largura dos intervalos [a;, b;]. No contexto de importance
sampling, isso significa que, quando cada componente do estimador é limitado, o estimador
como um todo permanece estdvel — a variancia efetiva da medida inclinada ndo pode explodir.

6.5 Por que a Inclinacao Exponencial?

Ao realizar importance sampling, pode surgir a pergunta: por que usar a inclinagdo exponencial em
vez de qualquer outra distribui¢do com a mesma média? Afinal, muitas reponderacdes podem
satisfazer [E; [X] = a. O que torna a inclinagdo exponencial especial?

Para entender isso, fazemos um breve desvio pela dualidade convexa. Dada uma funcdo
convexa § : R? — R U {+o0}, seu conjugado convexo (ou dual de Fenchel) é definido por

¥ (y) = sup{ (v, x) — ¢(x) }.

x€R4
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Essa transformacdo troca os papéis de x e y, convertendo restri¢des lineares no espago primal em
fung¢des suaves no espago dual.
Um exemplo central dessa construcao é a fungio log-particido

P(A) = logEf [eAX} ,

que é convexa em A. Seu conjugado convexo é obtido aplicando a mesma regra:

p*(a) = sup{ Az —p(A) }.

AER

Vamos agora calcular ¢*(a) explicitamente. Para qualquer densidade g absolutamente conti-
nua em relacdo a f e qualquer A € R,

#(0) = log By [e] —tog e, | 3| > B (1X -+ 1og £(X) ~ log (X)) = AE; [X] - Di (sl

onde a desigualdade segue da desigualdade de Jensen. Se [E¢ [X]| = a, obtemos
Dxr(gllf) > Aa— (L) para todo A.

Como essa desigualdade vale para qualquer A, o lado esquerdo deve ser maior ou igual ao
maior valor possivel do lado direito. Aplicando esse raciocinio, temos

Dxw(8llf) = Slip{)\a -y}

Como isso vale para todo g satisfazendo [E, [X] = a, também vale para o menor valor possivel
do lado esquerdo, isto &,

L, D (glf) = sup{Aa = g(0)} = ' (@)

O ponto que maximiza a definicdo do conjugado
y'(a) = sup{Aa—p(A)}

é encontrado ao anular a derivada em relagdo a A:

d B Foan
dj(/\a_‘/]@)) =a—y'(A) —ﬂ—m-
Essa expressdo zera no ponto A = A, tal que
E Fra [X] =a.
Substituindo esse valor no conjugado, obtemos
P*(a) = aka — P(Aa).

Podemos agora verificar que a mesma expressdo surge da divergéncia de Kullback-Leibler:

1. (X)
f(X)

Di (1) = B, [log 28] = By 1hax = pira).
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Como [y, [X] = a4, isso se simplifica para
D (fallf) = Aat = $(Aa) = 97 (a).
Anteriormente, estabelecemos a desigualdade
Dxi(g|lf) > Aa —¢(A) paratodo g com [E, [X] = a e todo A,

o que implica

. > .
g:]E:?I&f]:a Dxo(gllf) = ¢*(a)

Ao exibir a distribuicdo especifica ¢ = f), que atinge a igualdade,

Dxr(fa,llf) = Aaa — p(Aa) = 9" (a),

vemos que a desigualdade é exata, e a inclinagdo exponencial f,, atinge o infimo:

§@) = int Diclslf)

Em outras palavras, entre todas as distribui¢cdes ¢ cuja média é 4, a inclinagdo exponencial
f1, € a mais préxima de f no sentido da divergéncia de Kullback-Leibler. Ela resolve, portanto,

o problema de otimiza¢do com restrigdo

D ,
T D (&lf)

mostrando que a inclinacdo exponencial ndo é uma escolha arbitrdria, mas sim a escolha 6tima

ditada pela dualidade convexa.
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Capitulo 7

Cadeias de Markov e MCMC

A simulacao é uma técnica extremamente poderosa em probabilidade e estatistica. Quando nao
conseguimos calcular analiticamente quantidades como a média ou a varidncia de uma varidvel
aleatéria X, podemos gerar amostras independentes X, X», ..., X, dessa distribuigdo e aproxi-

mar os valores verdadeiros por meio de estimadores amostrais:

1 & —
Y (X — Xn)?.
n—1 =

E(X)~ —(Xy+ -+ Xyn) = X, Var(X) =~

S|

A lei dos grandes ntiimeros garante que essas aproximacgdes serdo boas se n for grande. Pode-
mos melhorar cada vez mais a aproximagdo aumentando 7, bastando rodar o computador por
mais tempo (em vez de lidar com uma soma ou integral possivelmente intratdvel). Como dis-
cutido no Capitulo 10, essa abordagem, em que geramos valores aleatdrios para aproximar uma
quantidade, é chamada de método de Monte Carlo.

Uma limitacdo importante da ideia de Monte Carlo é que precisamos saber como gerar as
amostras Xj, ..., X, (de preferéncia de forma eficiente, pois queremos n grande). Por exemplo,
suponha que desejamos simular de uma distribui¢do continua com fung¢do densidade

fx) o 31— x)%2, O<x<1

Olhando apenas para a fun¢do de densidade, ndo é 6bvio como obter uma varidvel aleatéria com
essa distribui¢do. Reconhecemos, no entanto, que se trata de uma Beta(4.1,5.2). Mesmo assim,
inverter a fungdo de distribuigdo acumulada é dificil, e em distribui¢des mais complicadas nem
sequer conhecemos a constante de normaliza¢do da densidade.

Essas dificuldades motivam o uso de um conjunto poderoso de algoritmos que revolucio-
naram a estatistica e a computacdo cientifica: os métodos de Monte Carlo via Cadeias de Markov
(MCMC). A ideia central é construir uma cadeia de Markov cuja distribuicdo estaciondria seja

justamente a distribui¢do de interesse.

Antes de estudarmos o MCMC em si, precisamos entender melhor o objeto central que sus-

tenta esses métodos: as cadeias de Markov.
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7.1 Cadeias de Markov (Resumo)

Cadeias de Markov “vivem” tanto no espago quanto no tempo: o conjunto de valores possiveis
de X, é chamado de espaco de estados, enquanto o indice n representa a evolugdo do processo ao
longo do tempo.

O espago de estados de uma cadeia de Markov pode ser discreto ou continuo, e o tempo
também pode ser discreto ou continuo. Neste capitulo vamos focar exclusivamente em cadeias
de Markov com tempo discreto e espago de estados finito. Em particular, assumiremos que X,, assume
valores em um conjunto finito, que usualmente denotamos por {1,2,...,M} ou {0,1,..., M}.

Definicdo 2 (Cadeia de Markov). Uma sequéncia de varidveis aleatérias Xo, X1, Xz, . .. com valores no
espaco de estados {1,2,..., M} é chamada de cadeia de Markov se, para todo n > 0,

P(Xp1=J| Xn=10Xy-1=1ip-1,...,X0=1p) =P(Xpyp1 =j | Xn =1).

A condicdo acima é chamada de propriedade de Markov. Ela afirma que, dado o presente, o
passado e o futuro sdo condicionalmente independentes. Ou seja, para prever o préximo estado,
basta conhecer o estado atual.

Para descrever a dindmica de uma cadeia de Markov, precisamos conhecer as probabilidades
de transicdo de qualquer estado para qualquer outro.

Definicdao 3 (Matriz de transicdo). Seja Xo, X1, Xo, ... uma cadeia de Markov com espago de estados
{1,2,..., M}. Definimos

qij = P(Xug1 = j | Xu = i),
como a probabilidade de transicdo do estado i para o estado j. A matriz Q = (qij)%:l é chamada de matriz
de transicdo da cadeia.

A matriz de transi¢do Q é ndo-negativa e cada linha soma 1, pois, dado um estado inicial 7, a
cadeia deve transitar para algum estado do espaco.

Exemplo 25 (Cadeia chuva-sol). Suponha que em cada dia o clima possa ser chuvoso (R) ou ensolarado
(S). Se hoje estd chuvoso, amanhi estard chuvoso com probabilidade 1/3 e ensolarado com probabilidade
2/3. Se hoje estd ensolarado, amanhd estard chuvoso com probabilidade 1/2 e ensolarado com probabilidade
1/2.

Definindo X, como o clima no dia n, temos uma cadeia de Markov com espago de estados {R,S} e

_(1/3 2/3
Q= <1/2 1/2)’

onde a primeira linha corresponde ao estado R e a segunda ao estado S.

matriz de transicio

Uma vez conhecida a matriz de transi¢do Q de uma cadeia de Markov, podemos calcular as

probabilidades de transi¢do em horizontes de tempo maiores que um passo.

Definigao 4 (Probabilidade de transi¢do em 1 passos). A probabilidade de transi¢do em 7 passos
do estado i para o estado j é a probabilidade de estarmos em j exatamente n passos apds termos comegado
em i. Denotamos por

qg@ =P(X,=j|Xo=1).
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Por exemplo, para n = 2, temos
2
qu ) = Z%‘k Gkjr
k

pois para ir de i a j em dois passos, a cadeia precisa ir primeiro de i até algum estado intermedia-
rio k, e depois de k até j. A propriedade de Markov garante a independéncia condicional dessas
transicoes.

Note que o lado direito corresponde exatamente ao elemento (i,j) da matriz Q?, pela defini-
cdo de multiplicagdo de matrizes. Portanto, a matriz Q® fornece as probabilidades de transigao
em dois passos.

De maneira geral, por indugdo obtemos que

7

é a entrada (i,j) da matriz Q".
Exemplo 26 (Matriz de transi¢do de uma cadeia de Markov com 4 estados). Considere a cadeia
de Markov com 4 estados representada na Figura abaixo. Quando ndo hd probabilidades escritas sobre as
setas, isso significa que todas as transicdes saindo de um mesmo estado sdo igualmente provdveis.

Por exemplo, existem 3 setas saindo do estado 1, de modo que as transigoes 1 — 3,1 —2e1 — 1

ocorrem cada uma com probabilidade 1/3. Portanto, a matriz de transi¢do da cadeia é

1/3 1/3 1/3 0
0 0 1/2 1/2
0 1 0 0

1/2 0 0 1/2

(D
(22
O D

Para calcular a probabilidade de que a cadeia esteja no estado 3 apds 5 passos, partindo do estado 1,
basta olhar para o elemento (1,3) da matriz Q°.
Usando um computador, obtemos

853/3888 509/1944 52/243 395/1296
173/864  85/432 31/108 91/288
37/144 29/72 1/9 11/48

499/2592 395/1296 71/324 245/864

Q° =
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Assim,

5y 52
Tis = 543

A matriz de transicdo Q codifica a distribuicdo condicional de X; dado o estado inicial da
cadeia. Especificamente, a i-ésima linha de Q é a PMF condicional de X; dado Xy = i, escrita
como um vetor linha. De forma anéloga, a i-ésima linha de Q" corresponde a PMF condicional
de X,, dado Xy = i.

Para obter as distribui¢des marginais de Xy, Xj, ..., precisamos especificar ndo apenas a ma-
triz de transi¢do, mas também as condigdes iniciais da cadeia. O estado inicial Xy pode ser
especificado de forma deterministica, ou de forma aleatéria segundo alguma distribuicdo. Seja
t = (t1,t2,...,tpm) a PMF de X, vista como vetor linha, em que t; = IP(Xo = i).

Proposigdo 1 (Distribui¢do marginal de X,). Sejat = (t1, 2, ..., tp) 0 vetor de probabilidades iniciais,
com t; = P(Xo = i). Entdo a distribuicdo marginal de X,, é dada por

tQ".

Em particular, a j-ésima componente do vetor tQ" é

Demonstragio. Pela lei da probabilidade total, condicionando em Xy, a probabilidade de a cadeia
estar no estado j apds n passos é

M ()
P(X, =j) =Y P(Xo=i)P(Xy = | Xo=1) = )_tiq;.
i=1 i=1

Mas essa soma corresponde exatamente a j-ésima componente do vetor tQ", pela definicdo de
multiplicacdo de matrizes. O

Exemplo 27 (Distribui¢des marginais de uma cadeia de Markov com 4 estados). Considere no-
vamente a cadeia de Markov com 4 estados representada na Figura anterior. Suponha que as condigoes
iniciais sejam dadas por
t= (b i)
isto é, a cadeia comega com igual probabilidade em cada um dos quatro estados.
Seja X, a posicdo da cadeia no tempo n. A distribuicdo marginal de Xy é

1/3 1/3 1/3 0
) 0 0 1/2 1/2
0 1 0 0
0 1/2 0 0 1/2

Q= (

W=
|
—~
o

~
Q=

~
e

~
W=
~—

11
i 1

IS

A distribuicdo marginal de Xs é

853/3888 509/1944 52/243 395/1296
) 173/864  §5/432 31/108 91/288 | _ e 2ag wn sae)
37/144 29/72 1/9 11/4:8 155527 77767 4867 5184
499/2592 395/1296 71/324 245/864

Q= (

IS
IS
IS
NS

Neste caso utilizamos o computador para realizar as multiplicacoes de matrizes.
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7.1.1 Classifica¢do dos estados

Nesta parte introduziremos a terminologia usada para descrever as vérias caracteristicas de uma
cadeia de Markov. Os estados de uma cadeia podem ser classificados como recorrentes ou tran-
sientes, dependendo de o processo retornar ou ndo a eles ao longo do tempo. Além disso, cada
estado possui um periodo, que é um niimero inteiro positivo que resume a quantidade de passos
que pode decorrer entre visitas sucessivas a esse estado.

Essas caracteristicas sdo importantes porque determinam o comportamento de longo prazo
da cadeia de Markov, que serd estudado mais adiante.

Os conceitos de recorréncia e transiéncia sdo melhor ilustrados com um exemplo.

SOAEDS

Na cadeia de Markov mostrada a esquerda da Figura, uma particula se movendo entre os
estados continuara visitando todos os quatro estados indefinidamente, pois é possivel transitar
de qualquer estado para qualquer outro.

Em contraste, considere a cadeia a direita da Figura, e suponha que a particula comece no
estado 1. Durante algum tempo, a cadeia pode permanecer no tridngulo formado pelos estados
1,2,3, mas eventualmente atingird o estado 4. A partir do momento em que entra no estado 4, a
cadeia nunca mais retorna a 1,2, 3, e passa a se mover apenas entre os estados 4, 5,6 para sempre.

Assim, os estados 1,2, 3 sdo transientes, enquanto os estados 4,5, 6 sdo recorrentes.

Defini¢do 5 (Estados recorrentes e transientes). Um estado i de uma cadeia de Markov é dito recor-
rente se, partindo de i, a probabilidade de que a cadeia eventualmente retorne a i é igual a 1.

Caso contrdrio, o estado é dito transiente, o que significa que, se a cadeia comegar em i, existe probabi-
lidade positiva de nunca mais retornar a i.

Embora a definicdo de estado transiente apenas exija que haja probabilidade positiva de
nunca retornar ao estado, podemos dizer algo mais forte: sempre que existir probabilidade
positiva de abandonar i para sempre, a cadeia inevitavelmente deixard o estado i em algum
momento.

Além disso, é possivel caracterizar a distribui¢do do ntimero de retornos ao estado.

Proposicdo 2 (Numero de retornos a um estado transiente é Geométrico). Seja i um estado tran-
siente de uma cadeia de Markov. Suponha que a probabilidade de nunca retornar a i, partindo de i, seja
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p > 0. Entdo, partindo de i, o niimero de vezes que a cadeia retorna a i antes de sair para sempre é uma
varidvel aleatéria com distribuicdo

Geom(p).

Demonstragio. A demonstracdo segue pela interpretacdo da distribui¢do Geométrica. Cada vez
que a cadeia estd em 7, temos um ensaio de Bernoulli: ocorre “sucesso” se a cadeia sair de i para
sempre, e ocorre “falha” se a cadeia eventualmente retornar a i. Esses ensaios sdo independentes
pela propriedade de Markov.

O ntimero de retornos ao estado i corresponde ao ntimero de falhas antes do primeiro sucesso,
exatamente a histéria da distribuicio Geométrica. E como uma varidvel Geométrica assume
valores finitos com probabilidade 1, concluimos que, ap6s um ntmero finito de visitas, a cadeia

deixara o estado i para sempre. O

Se o nimero de estados ndo for muito grande, uma maneira de classificar estados como
recorrentes ou transientes é desenhar o diagrama da cadeia de Markov e aplicar o mesmo tipo
de raciocinio feito na andlise dos exemplos anteriores.

Um caso especial em que podemos concluir imediatamente que todos os estados sdo recor-
rentes ocorre quando a cadeia € irredutivel, isto ¢, quando é possivel ir de qualquer estado a
qualquer outro.

Defini¢ao 6 (Cadeia irredutivel e redutivel). Uma cadeia de Markov com matriz de transicio Q é dita
irredutivel se, para quaisquer dois estados i e j, for possivel ir de i até j em um niimero finito de passos,
com probabilidade positiva.

Isto é, para quaisquer estados i, j, existe um niimero inteiro n > 0 tal que a entrada (i,]) de Q" é
positiva.

Uma cadeia que ndo é irredutivel é chamada de redutivel.

Proposicao 3 (Irredutibilidade implica recorréncia de todos os estados). Em uma cadeia de Markov
irredutivel com espago de estados finito, todos os estados sdo recorrentes.

Demonstragio. E claro que pelo menos um estado deve ser recorrente; se todos fossem transientes,
a cadeia eventualmente abandonaria todos os estados para sempre, o que é impossivel.

Sem perda de generalidade, suponha que o estado 1 seja recorrente. Considere outro estado
i. Pela defini¢do de irredutibilidade, existe algum 7 tal que qg?) > 0.

Assim, toda vez que a cadeia visita o estado 1, ha uma probabilidade positiva de que, apds
n passos, ela esteja no estado i. Como a cadeia visita o estado 1 infinitas vezes (por recorréncia),
concluird inevitavelmente no estado i.

Além disso, partindo de i, a cadeia retorna ao estado 1, ja que este é recorrente. Aplicando o
mesmo argumento recursivamente, a cadeia visitard o estado i infinitas vezes.

Como i foi arbitrario, segue que todos os estados sdo recorrentes. O

A reciproca da proposicdo anterior é falsa: é possivel ter uma cadeia de Markov redutivel em
que todos os estados sejam recorrentes.

m exemplo é a cadeia ilustrada na Figura abaixo, que consiste em duas “ilhas” de estados.
U 1 d lustrad EF b t d “ilhas” de estad



7.1. CADEIAS DE MARKOV (RESUMO) 99

Outra forma de classificar estados é de acordo com seus periodos. O periodo de um estado

resume quanto tempo pode se passar entre visitas sucessivas a esse estado.

Defini¢do 7 (Periodo de um estado, cadeia periédica e aperiddica). O periodo de um estado i em
uma cadeia de Markov é o mdximo divisor comum (mdc) dos niimeros de passos em que é possivel retornar
a i, partindo de i. Mais precisamente, o periodo de i é

(i) = ged{n >1: (Q"); > 0}.

Se nunca for posstvel retornar a i, definimos d (i) = oo.
Um estado é dito aperiddico se d(i) = 1, e periddico caso contrdrio.
A cadeia como um todo é chamada aperiddica se todos os seus estados forem aperiédicos, e periddica

caso contrdrio.

Exemplo 28 (Periodicidade em cadeias de Markov). Considere novamente as duas cadeias de Markov
da Figura abaixo.

<D
(D o‘o’

DO D

Na cadeia com 6 estados (a direita), partindo do estado 1, é possivel retornar a ele apds 3 passos, 6
passos, 9 passos e assim por diante. No entanto, ndo é possivel retornar ao estado 1 em um niimero de
passos que nio seja miiltiplo de 3. Portanto, o estado 1 tem periodo 3. De forma andloga, os estados 2 e 3
também tém periodo 3.

Por outro lado, os estados 4,5, 6 possuem periodo 1. Como nem todos os estados tém periodo 1, a cadeia
é considerada periddica.

Em contraste, na cadeia da Figura 2 (a esquerda), todos os estados sdo aperiédicos, de modo que a cadeia
como um todo é aperiédica.
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IMPORTANTE!!! Vale destacar uma diferenca importante: algumas propriedades pertencem
a estados individuais da cadeia de Markov, enquanto outras pertencem a cadeia como um todo. A
tabela abaixo resume essa distin¢do, destacando os conceitos principais lado a lado para facilitar

a comparacgao.

Propriedades de estados

Propriedades da cadeia

Estado recorrente: Partindo de i, a probabi-
lidade de eventualmente retornar ai é 1.

Cadeia irredutivel: E possivel ir de qual-
quer estado i para qualquer estado j em um
numero finito de passos, com probabilidade

positiva.

Estado transiente: Partindo de i, existe pro-
babilidade positiva de nunca mais retornar

ali.

Cadeia redutivel: Nao é possivel ir de al-
guns estados 7 para outros j em um ntimero
finito de passos, com probabilidade posi-

tiva.

Estado aperiédico: O periodo do estado i é
1, ou seja, é possivel retornar a i em tempos

arbitrarios suficientemente grandes.

Cadeia aperiédica: Todos os estados da ca-

deia sdo aperiddicos.

Estado periédico: O periodo do estado i é
maior que 1, ou seja, o retorno a i s6 pode

Cadeia peridédica: Pelo menos um estado
da cadeia é periddico.

ocorrer em multiplos de algum inteiro d >
1.

7.1.2 Distribuicdo estacionaria

Os conceitos de recorréncia e transiéncia sdo fundamentais para compreender o comportamento
de longo prazo de uma cadeia de Markov. Inicialmente, a cadeia pode passar algum tempo em
estados transitérios; porém, com o tempo, ela tende a permanecer apenas nos estados recorrentes.
Surge entdo uma pergunta natural: qual fracdo do tempo a cadeia passard em cada um desses
estados recorrentes?

A resposta é dada pela distribuicio estaciondria da cadeia, também chamada de distribuigdo em
regime permanente. Veremos nesta se¢do que, para cadeias de Markov irredutiveis e aperiddicas,
a distribuigdo estaciondria descreve o comportamento assintético da cadeia, independentemente
das condigdes iniciais. Ela fornece tanto a probabilidade de longo prazo de estar em um deter-
minado estado quanto a proporc¢do de tempo que a cadeia passard nesse estado.

Defini¢do 8 (Distribuigdo estaciondria). Um vetor linha s = (s1,...,spm), coms; > 0e Y ;s; =1, ¢
dito uma distribuicdo estaciondria para uma cadeia de Markov com matriz de transigio Q se

Y siqij =sj, para todo j.
i
Esse sistema de equagoes lineares pode ser escrito de forma compacta como

sQ =s.
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Recorde que, se s é a distribuigdo de Xy, entdo sQ é a distribui¢do marginal de X;. Assim, a
igualdade sQ = s significa que, se Xy tem distribui¢do s, entdo X; também terd distribuigdo s.
Pelo mesmo raciocinio, X5, X3, ... também seguirdo a mesma distribuicdo. Em outras palavras,
uma cadeia de Markov cuja distribuicado inicial é a distribuigdo estaciondria s permanecera nessa

distribui¢do para sempre.

Observacdo 2. Podemos ter uma interpretagio intuitiva da distribuicdo estaciondria a partir de uma
simulagdo mental. Imagine que temos um niimero muito grande de particulas (por exemplo, um bilhdo), e
que a distribuigdo inicial dessas particulas entre os estados é proporcional a distribuicdo inicial da cadeia.
Em sequida, fazemos todas as particulas evoluirem sequndo a matriz de transigdo Q.

Apds um certo miimero de passos n, contamos quantas particulas estdo em cada estado. Quando a
cadeia atinge o regime estaciondrio, essas proporgoes se estabilizam: se contarmos novamente apds aplicar
Q mais uma vez, as fragoes relativas de particulas em cada estado permanecerdo essencialmente as mesmas.

Assim, a distribuigdo estaciondria s representa justamente essa configuragio de equilibrio em que a

aplicagdo de Q ndo altera mais as proporgdes — isto é, sQ = s.

Exemplo 29 (Distribuigdo estaciondria para uma cadeia com dois estados). Considere a matriz de

o= (1 1)

A distribuigdo estaciondria é da forma s = (s,1 — s). Devemos entdo resolver

(s,l—s)( ):(s,l—s),

Is+i(1-s)=s,

transicdo

NI—= Q=
NI—= WIN

NI—= Q=
NI—= WIN

0 que é equivalente ao sistema

Zs+i(l-s)=1-s.

A tnica solugdo é s = % Portanto, a distribuicdo estaciondria vinica dessa cadeia de Markov é

s— (34
- \7'7)

Mais geralmente, suponha que g1o = aeqy =b,com0<a <1le0 <b <1 Amatrizde transigio

1—a a
QZ( b 1—b>'

Escrevendo s = (s1,52), a equagido sQ = s fornece o sistema linear

é entdo

(1 — 61)51 + bsy = s,

as1+ (1 —=Db)sy = sp.

Ambas as equagdes se reduzem a
as| = bss.

Como sy = 1 — sq, obtemos a solucdo iinica

s b a
“\a+ba+b)’




102 CAPITULO 7. CADEIAS DE MARKOV E MCMC

Existéncia, unicidade e convergéncia

Surge naturalmente a questdo: uma distribuicdo estaciondria sempre existe? E, caso exista, ela
é tnica? Para cadeias de Markov com espaco de estados finito, a resposta é afirmativa: sempre
existe uma distribuigdo estaciondria. Além disso, quando a cadeia é irredutivel, essa distribuigao
¢ Unica.

Teorema 8 (Existéncia e unicidade da distribui¢do estaciondria). Para qualquer cadeia de Markov
irredutivel, existe uma vinica distribuicdo estaciondria. Nessa distribuigdo, todos os estados possuem pro-
babilidade positiva.

Esse resultado decorre de um teorema clédssico da algebra linear conhecido como teorema de
Perron—Frobenius.

Além da existéncia e unicidade, também ¢é importante entender a convergéncia para a distri-
buigdo estaciondria. J4 afirmamos de forma informal que a distribuicdo estaciondria descreve
o comportamento de longo prazo da cadeia: se a cadeia for executada por tempo suficiente, a
distribuicdo marginal de X, tende a distribuigdo estaciondria s. O resultado a seguir formaliza
essa ideia.

Teorema 9 (Convergéncia para a distribuicdo estacionaria). Se (Xo, X, ...) é uma cadeia de Markov
irredutivel e aperiédica com distribuicdo estaciondria s e matriz de transigdo Q, entdo

P(X, =i) —s; quandon — oo.
Em termos matriciais, Q" converge para uma matriz cujas linhas sio todas iquais a s.

Portanto, ap6s um ndmero suficientemente grande de passos, a probabilidade de que a cadeia
esteja em um estado i se aproxima de s;, independentemente das condicdes iniciais. Isso mostra
que cadeias irredutiveis e aperiddicas sdo particularmente agraddveis de trabalhar, pois o seu
comportamento assint6tico é estavel e previsivel.

Observagao 3. De modo intuitivo, a condi¢ido adicional de aperiodicidade serve para evitar cadeias
que apenas “giram em ciclos”, alternando de forma deterministica entre grupos de estados. Por exemplo,
em cadeias onde certos estados s6 sdo acessiveis apds um niimero par de passos, enquanto outros apenas
apds um niimero impar, a convergéncia ndo ocorre sem essa hipétese. A combinagio de irredutibilidade
e aperiodicidade garante que a cadeia possa se misturar completamente no espago de estados e, portanto,
converge para sua distribuicdo estaciondria.

Exemplo 30 (Cadeia periddica). Considere a cadeia de Markov ilustrada abaixo, em que cada estado
possui periodo 5.

O

Il
- o o o o
R R A e
o o o R~ o
o o~ o o
o = o o o
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O

_(11111)

Pode-se verificar facilmente que

— \5r5/5/5/5
¢é uma distribuicio estaciondria dessa cadeia, e que ela é vinica.

No entanto, suponha que a cadeia comece em Xo = 1. Nesse caso, a distribuicdo de X, atribui
probabilidade 1 ao estado (n mod 5) + 1 e probabilidade 0 a todos os outros estados. Em particular, a
distribuigdo de X,, ndo converge para s quando n — oo.

De forma equivalente, a matriz Q" ndo converge para uma matriz em que todas as linhas sdo iguais a
s. As transigoes dessa cadeia sio deterministicas, e portanto cada Q" continua sendo uma matriz composta
apenas por zeros e uns. Esse exemplo mostra que, embora a distribuicdo estaciondria exista e seja iinica, a

convergéncia nido ocorre quando a cadeia é periddica.

Observacgao 4. A condigio de irredutibilidade é essencial para que a distribuicdo estaciondria seja tinica
e represente o comportamento de longo prazo da cadeia.

Se a cadeia ndo for irredutivel, o espago de estados pode se decompor em vdrios subconjuntos fechados
— ou seja, conjuntos de estados dos quais ndo é possivel sair. Cada um desses subconjuntos pode ter
a sua prépria distribuigdo estaciondria, o que implica que ndo hd uma inica distribuicdo que descreva o
comportamento de toda a cadeia.

Por exemplo, suponha que existam dois conjuntos de estados A e B tais que, uma vez que a cadeia entra
em A, nunca mais pode ir para B, e vice-versa. Entdo, a probabilidade de longo prazo de estar em A ou em
B dependerd da condigdo inicial. Isso impede a convergéncia para uma distribuigdo estaciondria 1inica.

A irredutibilidade elimina esse problema: ela garante que todos os estados se comunicam entre si,
isto é, para quaisquer i e j, existe algum niimero de passos n tal que (Q");; > 0. Com isso, a cadeia
pode eventualmente alcangar qualquer estado a partir de qualquer outro, o que assegura tanto a existéncia
quanto a unicidade da distribuicdo estaciondria e a convergéncia para ela.

Tempo médio de retorno e comportamento de longo prazo

Além de descrever o comportamento assintético da cadeia, a distribuigdo estaciondria também
estd relacionada ao tempo médio entre visitas a um estado especifico.
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Teorema 10 (Tempo esperado de retorno). Considere uma cadeia de Markov irredutivel com distribui-
¢do estaciondria s. Seja r; o tempo esperado para a cadeia retornar ao estado i, dado que ela comega em i.
Entdo,

S; = —.
Ti

Esse resultado mostra que estados com maior probabilidade estaciondria sdo visitados com

mais frequéncia — em média, o tempo até retornar a eles é menor.

Exemplo 31 (Comportamento de longo prazo de uma cadeia com dois estados). Considere nova-
mente a cadeia de dois estados discutida anteriormente, cuja matriz de transicio é

)
()

No longo prazo, a cadeia passard aproximadamente 3/7 do tempo no estado 1 e 4/7 do tempo no estado 2.

NI—= WIN

A distribuigio estaciondria é

Comegando no estado 1, o tempo médio para retornar a esse estado é r1 = 7/3, em conformidade com o
teorema acima, pois s; = 1/r1.

Além disso, as poténcias da matriz de transigdo convergem para uma matriz em que cada linha coincide
com a distribuicio estaciondria:

Q"=<

7.1.3 Reversibilidade

> , quando n — oo.

N[ Q=
N—= WIN
SN—

2
—
EN[[SSRNIeM)
IN[FNENTI'S

Vimos que a distribuicdo estaciondria de uma cadeia de Markov é extremamente ttil para com-
preender seu comportamento de longo prazo. Entretanto, em muitos casos pode ser compu-
tacionalmente dificil determinar essa distribuigdo, especialmente quando o espaco de estados é
grande. Nesta secdo, estudamos um caso especial importante em que é possivel evitar o calculo
direto das equacdes de autovalor associadas a matriz de transicao.

Definigao 9 (Reversibilidade). Seja Q = (q;;) a matriz de transicdo de uma cadeia de Markov. Dizemos
que a cadeia é reversivel em relagdo a um vetor s = (s1,...,5m), coms; > 0e Y ;s; =1, se

siqij = sjqji, para todos os estados i, .
Essa equagdo é chamada de condicdo de equilibrio detalhado (ou detailed balance condition).

A intuigdo por trds da reversibilidade é a seguinte: uma cadeia reversivel, iniciada segundo
sua distribuigdo estaciondria, se comporta da mesma forma independentemente de o tempo estar
sendo observado para frente ou para trds. Mais precisamente, quando a cadeia estd em equilibrio,
a probabilidade de sair do estado i e ir para o estado j em um passo € s;g;;, e essa probabilidade
¢ exatamente igual a de sair de j e voltar para i, que € s;jq;;. Em outras palavras, o fluxo de
probabilidade de i para j é o mesmo que o de j para i

Siqij = Sjqji-
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Isso significa que, no regime estaciondrio, as transi¢cdes “para frente” e “para trds” ocorrem com a
mesma frequéncia média, de modo que, se observarmos a cadeia no tempo inverso, ela parecerd

estatisticamente idéntica a original.

Outra maneira de entender a reversibilidade é pensar na cadeia como um sistema com um
grande ndamero de particulas que se movem de forma independente de acordo com as proba-
bilidades de transi¢do. No longo prazo, a propor¢do de particulas em cada estado j é dada
pela probabilidade estaciondria s;. O equilibrio estacionério garante que, em média, o fluxo de
particulas que sai de cada estado é igual ao fluxo de particulas que entra nele.

Mais precisamente, seja n 0 namero total de particulas e s o vetor de propor¢des atuais de

particulas em cada estado. Temos que s é estaciondrio se, e somente se,
§j = Zsiqi]- = 5jqjj + Zsiqi]-, para todo ]
i i#j

Multiplicando por 1, obtemos
nsi(1—qj;) =Y _nsiqij.
i#j

O lado esquerdo representa o niimero médio de particulas que sairdo do estado j no préximo
passo, enquanto o lado direito representa o nimero médio de particulas que entrardo em j.
Portanto, hd um equilibrio entre entrada e saida de particulas em cada estado.

A condicdo de reversibilidade impde uma forma ainda mais forte de equilibrio: para cada
par de estados distintos i e j,

TZSiqi]‘ = TlS]'q]'i.
O lado esquerdo corresponde ao ntiimero médio de particulas que vao de i para j, e o lado direito

ao numero médio que vai de j para i. Assim, a reversibilidade garante que, par a par, o fluxo
entre dois estados é perfeitamente equilibrado.

Proposicido 4 (Reversibilidade implica estacionariedade). Se Q = (g;;) é a matriz de transicdo de
uma cadeia de Markov reversivel em relagio a um vetor s = (s1,...,Sp) ndo negativo, com soma dos
componentes igual a 1, entdo s é uma distribuicdo estaciondria da cadeia.

Demonstragido. Temos
Y sidij = ) 5idji = 5; ) 4ji = Sj,
i i i

onde a ultima igualdade decorre do fato de que a soma das probabilidades em cada linha de Q
é igual a 1. Logo, sQ = s, e portanto s é estaciondria. O

Esse é um resultado poderoso, pois frequentemente é mais simples verificar a condi¢do de
reversibilidade do que resolver o sistema completo de equagdes sQ = s.

Um caso importante e simples de cadeia reversivel ocorre quando a matriz de transigdo Q é
simétrica. Se Q é simétrica, isto €, qij = qji para todos o0s i, ], entdo a distribui¢do estaciondria é
uniforme sobre o espago de estados:

2l

s= (35 o
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De fato, se g;; = g;i, a condicdo de reversibilidade s;q;; = s;q;; é satisfeita sempre que s; = s; para

todos os pares (i, ).

Esse é um caso particular de um fato mais geral: quando cada coluna de Q também soma 1,

a distribui¢do uniforme continua sendo estacionaria.

Proposicdo 5 (Distribuicdo estaciondria uniforme). Se cada coluna da matriz de transicdo Q soma 1,

entdo a distribuigdo uniforme sobre todos os estados,

s= (35 s

),

=

¢ uma distribuicdo estaciondria da cadeia de Markov.

Demonstragio. Se cada coluna de Q soma 1, entdo o vetor linha v = (1,1,...,1) satisfaz vQ = v.

Dividindo por M, obtemos

b ),

) Q= (Girv

2=

(b o

logo a distribui¢do uniforme é estaciondria.

O]

Uma matriz cujas linhas e colunas somam 1 é chamada de matriz duplamente estocdstica. Toda

cadeia de Markov cuja matriz de transi¢do é duplamente estocéstica possui distribuicdo estacio-

naria uniforme.

Exemplo 32 (Caminhada aleatéria em uma rede ndo direcionada). Uma rede é um conjunto de nos

conectados por arestas. A rede é dita ndo direcionada se as arestas puderem ser percorridas em ambos os

sentidos, isto é, se ndo houver “ruas de mdo vinica”.

Considere um caminhante que percorre aleatoriamente as arestas de uma rede ndo direcionada. A partir

de um né i, o caminhante escolhe uma das arestas conectadas a i com probabilidades iguais e entdo atravessa

a aresta escolhida.

°‘o

P

O grau de um né é o mimero de arestas conectadas a ele. A sequéncia de graus de uma rede com nds

1,2,...,n é o vetor
d=(dy,dy,...,dy),
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onde d;j é 0 grau do no j. Arestas que ligam um né a ele mesmo (self-loops) siio permitidas e contam como
1 no grau desse no.
Por exemplo, para a rede acima, a sequéncia de graus é

d=(43232).
Note que, para todos os pares de nds i, j,
diqij = d;q;i,

pois q;; = 1/d; se {i,j} é uma aresta e q;; = 0 caso contrdrio (para i # j). Logo, pela proposicio anterior,
a distribuigdo estaciondria é proporcional a sequéncia de graus:

S; X di.

De forma intuitiva, os nds com maior grau sio mais “bem conectados”, e portanto o caminhante passa
mais tempo neles no longo prazo. No exemplo acima, isso resulta em

—_ (4 3 2 3 2
5= (14'14f14f14f14>'

que é a distribuigdo estaciondria da caminhada aleatdria nessa rede.

Mais geralmente, é possivel considerar uma caminhada aleatéria em uma rede ndo direcionada pon-
derada, onde cada aresta possui um peso. Nesse caso, o caminhante escolhe seu proximo né a partir de i
com probabilidades proporcionais aos pesos das arestas que partem de i. Esse processo também define uma
cadeia de Markov reverstvel. De fato, todo processo de Markov reversivel pode ser interpretado como uma
caminhada aleatéria sobre uma rede nio direcionada com pesos apropriados nas arestas.

7.2 Markov Chain Monte Carlo

Ao longo destas notas vimos que a simulagdo é uma ferramenta extremamente poderosa em pro-
babilidade. Quando o raciocinio analitico é complicado ou pouco intuitivo, a simulagdo permite
verificar resultados de forma empirica.

De maneira semelhante, se ndo soubermos calcular explicitamente a média e a variancia de
uma varidvel aleatéria X, mas soubermos gerar amostras independentes X1, X», ..., X;;, podemos
aproximar os valores verdadeiros por

n _ 1 n _
EX]~ Y X=X,  Var[X]~ Y (X — X))
j=1

n—lj:1

Pelo teorema da lei dos grandes ntimeros, essas aproximacdes se tornam mais precisas a medida
que n cresce. Podemos obter resultados cada vez melhores apenas aumentando o tempo de
simulagdo, sem precisar lidar com integrais ou somas intratdveis. Esse tipo de abordagem é

conhecido como método de Monte Carlo.

2

Um dos principais desafios dos métodos de Monte Carlo é a necessidade de saber gerar
amostras X1, Xy, ..., X, da distribui¢do desejada. Em muitos casos, isso ndo é nada trivial. Por
exemplo, suponha que queremos gerar valores de uma variavel continua com densidade

flx) xx®(1-x)*2, 0<x<1.
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Reconhecemos aqui a forma de uma distribui¢do Beta(4.1,5.2). Mesmo assim, a funcdo de dis-
tribuicdo acumulada (CDF) da Beta é complicada, e inverter essa fungdo para gerar amostras é
praticamente inviavel na pratica.

Em aplicacdes reais, as distribui¢des costumam ser muito mais complexas do que a Beta. Mui-
tas vezes, o termo de normalizagdo da densidade (ou massa de probabilidade) é desconhecido e
impossivel de calcular com precisdo, mesmo com computadores modernos e técnicas avangadas

de integracdo numérica.

O objetivo desta se¢do é introduzir o método Markov Chain Monte Carlo (MCMC), uma familia
de algoritmos que permite gerar amostras de distribui¢des complexas a partir de cadeias de
Markov. O desenvolvimento do MCMC revolucionou a estatistica e a computagao cientifica, pois
tornou possivel simular distribui¢es de alta dimensdo ou com normalizadores desconhecidos.

A ideia central é inverter o problema estudado anteriormente. Antes, conheciamos a matriz
de transi¢do Q e procurdvamos sua distribuicdo estaciondria s. Agora, o processo é o oposto:
partimos de uma distribui¢do s que desejamos simular e construimos uma cadeia de Markov
cuja distribuigdo estaciondria é exatamente s.

Se essa cadeia for executada por tempo suficiente, a distribui¢cdo de seus estados se aproxi-
mard da distribuigdo alvo s. O aspecto surpreendente é que isso pode ser feito sem conhecer
o termo de normaliza¢do de s, o que torna o método aplicdvel em uma enorme variedade de

contextos.

7.3 Algoritmo de Metropolis—Hastings

O algoritmo de Metropolis—Hastings é um método geral para construir cadeias de Markov cuja
distribuigdo estaciondria seja uma distribui¢do alvo arbitraria. A ideia central é inverter o pro-
blema usual: em vez de comecar de uma cadeia e buscar sua distribui¢do estaciondria, que-
remos agora construir uma cadeia cuja distribuicdo estaciondria seja uma distribuicdo prescrita
s=1(s1,...,5Mm)-

Suponha que o espago de estados seja finito, {1,..., M}, e que s; > 0 para todo i. Considere
uma cadeia de Markov conhecida, com matriz de transicdo P = (p;;). Essa cadeia é escolhida
apenas porque sabemos simulé-la facilmente — isto €, conseguimos gerar um proximo estado j
a partir de um estado atual i segundo as probabilidades p;;. Entretanto, P em geral ndo tem s
como distribui¢do estaciondria. Nosso objetivo é modificar o mecanismo de transi¢do de P para
obter uma nova cadeia Q = (g;;) que preserve s como estacionaria.

A modificagdo consiste em introduzir um mecanismo de aceitagio e rejeicio. A cadeia original
P propde um possivel novo estado, e o algoritmo decide se essa proposta serd aceita ou rejei-
tada. Essa etapa de aceitacdo é cuidadosamente escolhida para garantir que a cadeia resultante
satisfaga a condicdo de reversibilidade com respeito a s, o que implica que s é estaciondria.

O algoritmo procede da seguinte forma:

1. Escolha um estado inicial Xj (de forma aleatéria ou deterministica).

2. No passo 1, suponha que a cadeia estd em X, = i.
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3. Proponha um novo estado j de acordo com as probabilidades da linha i da matriz P; isto §é,

escolha j com probabilidade p;;.

4. Calcule a probabilidade de aceitacdo

S . ..
aij = mm( ]p]l, 1) .
SiPij
5. Com probabilidade a;;, aceite a proposta e defina X;, 11 = j; caso contrério, rejeite a proposta
e mantenha X, ;1 = 1.

A matriz P é chamada de matriz de proposta, pois serve apenas para gerar possiveis movimen-
tos da cadeia. As probabilidades de aceitacdo 4;; ajustam essas propostas para que o equilibrio
da nova cadeia Q obedega a distribui¢do s. Em nota¢do compacta, a nova matriz de transigdo é

pijdij, L #],
ql] - . .
1= Ykrsi Pikaix, =]

Um aspecto importante é que o algoritmo ndo requer o conhecimento da constante de normalizagido
de s. Se s o f, com f conhecida apenas até uma constante multiplicativa, o quociente s;/s; =
f(j)/ f(i) elimina o fator comum. Isso torna o método aplicdvel mesmo quando s é conhecida
apenas de forma ndo normalizada, o que ocorre frequentemente em problemas de inferéncia
bayesiana.

Além disso:

* se p;j = 0, a transi¢do i — j nunca € proposta, logo néo precisa ser avaliada;

* se p;; > 0, pode ocorrer de a proposta coincidir com o estado atual, e a cadeia naturalmente

permanece em i.

Em resumo, o algoritmo de Metropolis—-Hastings constréi uma nova cadeia de Markov a partir
de uma cadeia proposta P, aceitando ou rejeitando cada movimento de forma a garantir que a

distribuigdo estaciondria da cadeia resultante seja exatamente a distribuigdo desejada s.

Proposicdo 6 (Reversibilidade da cadeia de Metropolis—-Hastings). Seja Q = (g;;) a matriz de
transicdo da cadeia gerada pelo algoritmo de Metropolis—Hastings. Entdo a cadeia é reversivel em relagdo a
distribuigdo s, e portanto s é sua distribuigdo estaciondria.

Demonstragdo. Precisamos verificar a condi¢ao de reversibilidade
siqij = sjqji, para todos osi,j.

O caso i = j é imediato, pois ambos os lados sdo iguais a s;g;;. Consideremos agora i # j.

Se gi; > 0, entdo p;; > 0 — a cadeia s6 pode propor uma transigao possivel — e também pj; >
0, pois, do contrario, a probabilidade de aceitacdo seria nula. De forma analoga, se p;j, pji > 0,
entdo g;; > 0. Portanto, g;; e g;; sdo simultaneamente nulos ou néo nulos.
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Para i # j com g;; > 0, temos
qij = Pij%ij,
pois, partindo de 7, a tinica forma de alcangar j € propor essa transi¢do (com probabilidade p;;) e
aceita-la (com probabilidade a;).

Caso 1: se sjpj; < s;pjj, entdo

Elz']' = e a]'i =1.

Sipij
Logo,
. L SR
iqij iPijaij zpljsipij iPji iPjidji idji-

Caso 2: se sjpj; > s;pij, 0 mesmo raciocinio vale trocando i e j, de modo que novamente
Sifij = Sjqji-

Portanto, a cadeia de Metropolis—-Hastings satisfaz a condigdo de reversibilidade em relacdo
a s. Como cadeias reversiveis sdo estacionarias com respeito a mesma distribuigdo, segue que s é
a distribuigdo estaciondria da cadeia com matriz de transicdo Q. O

Observacgao 5 (Intuigdo via fluxo de particulas). Podemos interpretar a cadeia de Metropolis—Hastings
em termos de um sistema com n particulas que se movem entre os estados de acordo com as probabilidades
de transigio q;;. No equilibrio, a fragio de particulas no estado i é s;, de modo que existem aproximadamente
ns; particulas em i.

Durante um passo da cadeia, cada particula em i propde se mover para j com probabilidade p;;, e essa
proposta é aceita com probabilidade a;;. O fluxo esperado de particulas que saem de i e entram em j ¢,
portanto,

ns;pijdij.
Analogamente, o fluxo esperado de particulas indo de j para i é
TlS]'p]‘iﬂ]','.

A ideia central do algoritmo ¢é ajustar as probabilidades de aceitagio a;; de modo que, no regime estaci-
ondrio, esses dois fluxos se equilibrem:

ns;ipijdij = Nns;jpjid;ji,
ou, equivulentemente,
Siqij = Siqji-
Essa é exatamente a condigdo de reversibilidade (ou balanco detalhado).

A definigdo
X S.p..
a;; = mm(sng, 1)

garante esse equilibrio:
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* Se o fluxo proposto s;p;; é maior que o fluxo de volta s;pj;, isso significa que, no estado atual, hd
“muitas particulas” tentando sair de i em diregdo a j, em comparagio com o niimero que retorna de j
para i. Para evitar que o sistema se desequilibre (isto é, que o estado j acumule particulas e o estado i
esvazie), 0 algoritmo reduz a probabilidade de aceitagio a;j, permitindo que apenas uma fragio dessas
tentativas de saida seja efetivamente realizada. Esse “freio probabilistico” impede que o fluxo liquido
entre i e j seja diferente de zero.

* Se o fluxo proposto é menor, isto é, hd poucas particulas saindo de i em relagdo as que retornam
de j, o sistema jd tem menos movimento em direcdo a j. Nesse caso, todas as propostas sio aceitas
(a;j = 1), pois ndo hd risco de desequilibrio: permitir todas as transicdes ajuda a compensar o déficit
de fluxo, mantendo o equilibrio entre os dois estados.

Com esse ajuste, o sistema tende a um equilibrio dindmico, no qual a taxa média de particulas indo
de i para j é igual a taxa de particulas voltando de j para i. Ndo hd aciimulo nem escoamento liquido de
probabilidade entre os estados, e a igualdade

Siqij = Sidji

expressa precisamente essa situagdo de equilibrio. Assim, a cadeia de Metropolis—Hastings é reversivel em
relagdo a s, e s é sua distribuicdo estaciondria.

Exemplo 33 (Amostrador independente para a distribui¢do Beta). Vamos aplicar o algoritmo de
Metropolis—Hastings para gerar amostras de uma distribuicio Beta(a, b). Até aqui, introduzimos o método
apenas para espagos de estado finitos, mas as mesmas ideias se aplicam a espagos continuos.

Uma escolha simples para a cadeia de proposta é utilizar varidveis aleatérias independentes Unif(0, 1).
Ou seja, o proximo estado proposto é sempre um valor u € (0,1) gerado de forma independente do estado
atual. Esse caso particular é chamado de amostrador independente (independence sampler), pois as
propostas ndo dependem do ponto atual da cadeia.

Seja Wy um estado inicial arbitrdrio. A cadeia Wy, Wy, . .. é construida da sequinte forma:

1. No passo atual, suponha que a cadeia esteja em W, = w.
2. Gere uma proposta u ~ Unif(0,1).

3. Calcule a probabilidade de aceitagdo

a(w,u) = min( w1 —u)' 1> .

wi1(1 — w)b-1’

4. Com probabilidade a(w, u), aceite a proposta e defina W,1 = u; caso contrdrio, rejeite a proposta e
mantenha Wy, 1 = w.

Observe que o algoritmo ndo requer o conhecimento da constante de normalizagdo da densidade Beta(a, b),
pois ela se cancela na razdo entre as densidades no numerador e no denominador. Aqui, a densidade
Beta(a, b) desempenha o papel de s (a distribuicdo estaciondria desejada), enquanto a densidade uniforme
Unif(0, 1) desempenha o papel de p;; e pj;, jd que as propostas sdo sempre independentes do estado atual.
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Amostrador independente via Metropolis-Hastings

25} Amostras M-H
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Apds um niimero suficientemente grande de iteragdes, as varidveis Wy, Wy, 11, ... seguem aproxima-
damente a distribuicdo Beta(a, b). Essas amostras, entretanto, nio sio independentes: a cadeia gera uma
sequéncia de varidveis correlacionadas, que oscilam em torno da distribuicdo alvo conforme o processo

evolui.

Perceba que no algoritmo geral de Metropolis—Hastings, a probabilidade de aceitagio é dada por

I s(u) p(x | u)
alx ) = ““(stwm)'

onde p(u | x) é a densidade da proposta, isto é, a probabilidade de propor o ponto u dado o estado atual x.

O termo i Ei'ﬁg estd presente para corrigir possiveis assimetrias da distribuigdo de proposta. Por

. e ) p(x|u) .
exemplo, se é mais fdcil propor de x para u do que o contrdrio, o fator p(a[x) Compensa essa diferenga,

garantindo que o fluxo médio de particulas entre x e u permanega equilibrado:

s(x) p(u [ x)a(x,u) = s(u) p(x | u)a(u, x).
No caso da simulagdo da distribuicdo Beta, utilizamos um independence sampler, em que as propos-
tas sdo independentes do estado atual:
p(u | x) = p(u) = Unif(0,1).
Consequentemente,

p(x | u) = p(x) = Unif(0,1), e portanto

O fator de corregdo se cancela, e a formula de aceitagio se reduz para

. s(u
a(x,u) = mm(l, ()> ,
s(x)
que é exatamente a expressio usada no caso da Beta.
Em resumo, o termo da proposta desaparece porque a distribuicio de proposta é simétrica e indepen-
dente do estado atual, de modo que ndo hd assimetria a corrigir.

Observacgdo 6 (Periodo de aquecimento (burn-in)). Mesmo quando uma cadeia de Markov possui s
como distribuicdo estaciondria, isso significa apenas que s é um estado de equilibrio: se a cadeia for iniciada

com distribuicdo s, ela permanecerd em s para sempre.
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Na pritica, porém, a cadeia é iniciada em um ponto fixo Xo = i ou sequndo alguma distribui¢do inicial
diferente de s. As primeiras iteragdes servem para que a cadeia se desloque gradualmente em diregio ao
equilibrio, aproximando-se da distribuicdo estaciondria. Durante esse periodo inicial, as distribuigdes de
X, ainda refletem o estado inicial e ndo representam bem o comportamento estaciondrio.

Esse intervalo é chamado de periodo de aquecimento, ou burn-in. Se denotarmos por p™) o vetor
de probabilidades no tempo n, temos

p(n+l) — p(”)Q

Conforme n cresce, ocorre a convergéncia
p s,

isto é, a distribuicdo da cadeia tende a distribuicdo estaciondria s. Somente apds essa fase de convergéncia
é que as amostras podem ser consideradas representativas do regime estaciondrio.

Intuitivamente, podemos imaginar muitas cépias da cadeia evoluindo em paralelo. Inicialmente, hd um
aciimulo de particulas em certos estados e um déficit em outros. A medida que o tempo passa, os fluxos de
transigdo entre estados se equilibram, até que a proporgdo de particulas em cada estado se estabilize sequndo
s. Descartar as primeiras amostras equivale a ignorar essa fase de ajuste até o equilibrio.

7.4 Amostragem de Gibbs

A amostragem de Gibbs é um algoritmo de Monte Carlo empregado para gerar amostras aproxi-
madas de uma distribui¢do conjunta. A ideia central é simples: atualizar sucessivamente uma
varidvel de cada vez, amostrando-a de sua distribui¢ao condicional dado o valor atual das de-
mais. Esse método é particularmente ttil quando as distribui¢des condicionais sdo faceis de

manipular e de amostrar diretamente.

Considere o caso de duas variaveis aleatorias discretas X e Y, com fungdo de probabilidade

conjunta
pxy(ny) =P(X =xY =y).

Desejamos construir uma cadeia de Markov (X,, Y,;) cuja distribui¢do estaciondria seja px y.

Existem duas versdes principais do algoritmo de Gibbs, dependendo de como as varidveis
sdo atualizadas: (1) o Gibbs sistemidtico, no qual as varidveis sdo atualizadas em ordem fixa e
alternada; e (2) o Gibbs aleatério, no qual a varidvel a ser atualizada é escolhida aleatoriamente a
cada iteracdo.

O procedimento pode ser descrito da seguinte forma:

1. No passo atual, suponha que a cadeia esteja em (X, Yy,) = (xn, Yn)-
2. Gere um novo valor x,; a partir da distribui¢do condicional de X dado Y = vy, isto é,
Xni1 ~ p(x [ Y = yn).

3. Em seguida, gere um novo valor v, a partir da distribui¢do condicional de Y dado X =
Xp41:
Yni1 ~ Py | X = xnsa)-
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4. Atualize o estado da cadeia para (Xy,+1, Yn+1) = (Xn+1, Ynt1)-

Repetindo esses passos indefinidamente, a cadeia (X, Y,) converge para a distribui¢do esta-

ciondria pxy-.

Na versdo aleatoria, escolhe-se a cada iteracdo qual varidvel serd atualizada, com probabili-

dades iguais. O procedimento segue:

1. No passo atual, suponha que a cadeia esteja em (X, ;) = (xn, Yn)-
2. Escolha aleatoriamente qual componente serd atualizado:

* com probabilidade 1/2, atualize X;
* com probabilidade 1/2, atualize Y.

3. Se X for escolhido:

(a) Gere x,41 ~p(x|Y =ya);

(b) Defina (Xy11, Yut1) = (Xnt1,Yn)-
4. Caso Y seja escolhido:

(@) Gere yui1 ~ p(y | X = xa);
(b) Defina (X;41, Yu+1) = (X, Yu+1)-

Repetindo o processo, obtemos novamente uma cadeia cuja distribuicdo estaciondria é px y.
O algoritmo de Gibbs se estende naturalmente para o caso de d varidveis aleatérias. Nesse
d))

caso, o estado da cadeia é um vetor W,, = (W,(ll),. .., Wr(l Em cada iteracao:

1. Escolhe-se (de forma deterministica ou aleatéria) um indice j € {1,...,d};

2. Amostra-se o componente W,Sj ) da distribuigdo condicional
onde w(~7) denota todos os outros componentes fixos;

3. Mantém-se os demais componentes inalterados.

Observagdo 7. O amostrador de Gibbs pode ser interpretado como um caso especial do algoritmo de
Metropolis—Hastings. Enquanto o Metropolis—Hastings requer uma distribuicdo proposta e uma etapa
de aceitagio ou rejei¢do, o Gibbs utiliza propostas que sempre sdo aceitas, pois cada amostra é retirada

exatamente da distribuicdo condicional correta.

Teorema 11 (Gibbs aleatério como caso particular de Metropolis-Hastings). O amostrador de Gibbs
aleatdrio é um caso particular do algoritmo de Metropolis—Hastings, no qual toda proposta é sempre aceita.
Em particular, isso implica que a distribuicdo estaciondria do amostrador de Gibbs aleatério é exatamente

a distribuicdo conjunta desejada.
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Demonstragio. Apresentaremos a demonstracdo no caso bidimensional, embora o argumento se
estenda naturalmente a qualquer nimero de dimensdes.

Sejam X e Y variaveis aleatérias discretas cuja distribui¢do conjunta p(x,y) = P(X = x,Y =y)
é a distribuicdo estaciondria que queremos obter.

O algoritmo de Metropolis—Hastings, no estado atual (x,y), procede da seguinte forma: pro-
pde um novo estado (x/,y') segundo uma distribuicdo proposta q((x’,y") | (x,y)) e aceita essa
proposta com probabilidade

o Py () | ()
W), (x.y)) = {1' Py 4 7Y | (5, y) }

No caso do Gibbs aleatério, a proposta consiste em escolher aleatoriamente uma das coorde-

nadas e atualizé-la de acordo com sua distribuigdo condicional verdadeira. Mais precisamente:
1. Com probabilidade 1/2, atualiza-se X a partir de p(x’ | Y = y), mantendo Y’ = y.
2. Com probabilidade 1/2, atualiza-se Y a partir de p(y’ | X = x), mantendo X’ = x.

Vamos considerar o segundo caso, em que apenas Y ¢é atualizado (o caso simétrico em que X
é atualizado é andlogo). Assim,

Ay | xy) = 3p 1% e alxy) | (xy) =5 p(y | 0.

Substituindo esses termos na férmula de aceitacdao, obtemos:
. x,y x
o((0 ), (1,y) = min{1, EELIH AT

Como p(x,y) = p(x) p(y | x), temos:

Py )pl|x) _px)py | X)ply[x) _
puy)p(y [ x)  p(x)ply [x)p(y [x)

Logo,
a((x,y), (x/y/)) =1.

Isto é, toda proposta é sempre aceita. Consequentemente, o algoritmo de Metropolis—-Hastings,
com essa escolha especifica de distribuigdo proposta, coincide exatamente com o amostrador de
Gibbs aleatdrio, e ambos tém a mesma distribui¢do estaciondria p(x,y). ]

Exemplo 34 (O problema da galinha e dos ovos). Uma galinha poe um niimero N de ovos, onde
N ~ Poisson(A). Cada ovo choca com probabilidade p, onde p é desconhecido e tem distribuicdo

p ~ Beta(a,b).

Os pardmetros A, a, b sio conhecidos. O problema é que ndo observamos o niimero total de ovos N, apenas
o niimero de ovos chocados, denotado por X. Nosso objetivo é estimar a esperanga posterior

Efp|X=x],

isto é, a média de p apds observar x ovos chocados.
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1. A distribuigdo de X dado p é (pense no porqué)

X | p ~ Poisson(Ap).
Logo, a densidade posterior de p é proporcional a
flp| X=x) x P(X=x|p) f(p) e (Ap)*p" (1= p)" .

Essa distribuicido ndo tem forma fechada conhecida, o que dificulta a amostragem direta. Para con-
tornar isso, introduzimos a varidvel latente N, correspondente ao niimero total de ovos postos.

2. Condicionalmente a N = n e p, o niimero de ovos chocados segue
X | N =n,p ~ Binomial(n, p).
Assim, ao condicionar em N, recuperamos a conjugacio Beta—Binomial:
p|X=x,N=n~Beta(x+a,n—x+D).

O fato de que essa forma condicional é simples motiva o uso da amostragem de Gibbs: alternaremos
entre amostrar p dado N e N dado p.

3. Desejamos gerar amostras da distribuigdo conjunta de (p, N) condicionada a X = x. O algoritmo
segue 0s seguintes passos:

(a) Faga suposigoes iniciais para p e N.
(b) Repita até a convergéncia:

i. Atualizac¢do de p:
p|X=x,N=n~Beta(x+a,n—x+D0).

ii. Atualizagdo de N: Seja’Y = N — X o niimero de ovos que ndo chocaram. Condicional-
mente a p, o niimero de ovos ndo chocados segue

Y | p ~ Poisson(A(1 — p)).
Assim, sorteamos Y ~ Poisson(A(1 — p)) e definimos
N=X+Y.

4. Apés muitas iteracdes, obtemos amostras (pV), NV, (p?),N2)), ... extraidas aproximadamente
de f(p, N | X = x). A esperanga posterior é entdo estimada pela média amostral:

1 T
E(p|X=x)~=Y p0,
(1 X=2=7 Y
Os resultados obtidos por simulagdo do amostrador de Gibbs sdo resumidos na Tabela 4. Nas simula-
¢oes, utilizou-se A = 10 como valor esperado do niimero total de ovos postos, e um prior Beta(a, b)
com a = b =1, correspondendo a uma distribuicdo uniforme sobre [0, 1] para o pardmetro p. Foram
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Distribuicao de p | X=3
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considerados diferentes valores observados de ovos chocados X € {3,5,7,9}, enquanto os demais

pardmetros permaneceram fixos.

X|E[p|X=x] | E[N|X=x]
3 0.40 9.0
5 0.56 9.3
7 0.69 10.1
9 0.77 11.3

Observa-se que, a medida que o niimero de ovos chocados X aumenta, a média posterior de p cresce

de forma aproximadamente monotonica, variando de cerca de 0.4 para 0.77. Esse comportamento é

2

exatamente o esperado, pois X | p ~ Poisson(Ap): quanto maior o niimero de ovos chocados, maior

deve ser a probabilidade de sucesso p.

Além disso, a média posterior de N também aumenta levemente com X, o que é coerente com o

modelo N = X+ Y, em que Y | p ~ Poisson(A(1 — p)). Ou seja, observar mais ovos chocados

implica, em média, um niimero total ligeiramente maior de ovos postos. Esses resultados confirmam

que o amostrador de Gibbs captura corretamente a relagdo entre X, p e N, produzindo inferéncias

consistentes com o modelo tedrico.
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Capitulo 8

Processos de Difusao

8.1 Movimento Browniano e SDE

A solucdo de uma equagio diferencial estocdstica (SDE, do inglés stochastic differential equation) é um
processo estocastico. Um processo estocastico é uma colegdo de variaveis aleatérias X; € RY
que evoluem ao longo do tempo t > 0. Embora cada X; seja aleat6ria para um instante fixo, o
interesse estd em compreender como valores em tempos diferentes se relacionam — isto é, como
Xi4s depende de X;.

Um exemplo fundamental de processo estocéstico é o movimento browniano, denotado por
W;. Ele é caracterizado por duas propriedades essenciais:

¢ Incrementos normais: os incrementos tém distribuicdo normal com varidncia proporcional

ao intervalo de tempo:

Wiis — Wy ~ N(0, sI;), paratodot,s > 0.

¢ Incrementos independentes: para quaisquer t; > t, > t3, os incrementos Wy, — W;, e
Wi, — Wi, sdo independentes.

Essas propriedades fazem do movimento browniano o modelo canénico de ruido continuo,
servindo como base para a definicdo das equagodes diferenciais estocasticas.
Podemos aproximar numericamente uma trajetéria de movimento browniano discretizando
o tempo. Se tomamos passos igualmente espagados de tamanho s > 0, o incremento em cada
passo é dado por
Wiss = Wi+ /s¢,

onde ¢ ~ N (0, I;) é uma variavel aleatéria independente a cada passo. O parametro s representa
o tamanho do passo temporal — isto é, o intervalo entre duas amostragens consecutivas do
processo. O fator /s garante que a variancia dos incrementos cresga linearmente com o tempo,

como exige a definicdo de movimento browniano:
Var(WHs — Wt) = SId.

Essa relacdo mostra que quanto maior o intervalo s, maior a variabilidade esperada do incre-
mento, refletindo a natureza difusiva do processo.

119
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Para ilustrar, vejamos como podemos simular numericamente uma trajetéria de movimento
browniano. A ideia é construir uma sequéncia de valores (Wy, Ws, Was, ..., Wr) que satisfaca as

propriedades do processo.

1. Escolha dos pardmetros: Defina o tempo total de simulacdo T > 0 e o ntimero de passos #.

O tamanho do passo serd s = T /n.

2. Inicializagdo: Comece com Wy = 0, que é a condigdo inicial tipica do movimento browni-

ano.

3. Geragdo dos incrementos: Para cada passo k = 1,2,...,n, gere um ruido gaussiano inde-

pendente

Ex ~ N(O,l),

e compute o incremento
AW, = \/g k.

4. Construgio da trajetéria: Atualize o valor do processo de forma recursiva:
Wi = Wi_1 + AW

O vetor (Wy, Wy, ..., W, ) representa uma amostra discreta da trajetéria de W; no intervalo
[0, .

O resultado é mostrado na Figura 8.1, que exibe duas trajetérias com diferentes tamanhos de
passo s. Quanto menor o passo, mais suave e precisa é a aproximacado da trajetéria continua de

um movimento browniano.

Trajlegérias de movimento browniano com diferentes tamanhos de passo s

5=0.020 (passo grande)
5=0.002 (passo pequeno)
0.51
g
S 0.0f
o
[
o
a
—05}
-1.0t
0.0 0.2 0.4 0.6 0.8 1.0
tempo t

Figura 8.1: Simulacdo de duas trajetérias de movimento browniano com diferentes tamanhos de

passo s.

Exercicio 27. Simule movimentos brownianos com diferente passos.

Com base nesse ruido continuo W;, uma equagado diferencial estocastica é uma equagdo que

descreve a evolucdo de um processo X; segundo

dXt = f(Xt, t) dt + g(Xt, t) th
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O primeiro termo, f(X;, t) dt, representa a tendéncia média do movimento e é chamado de drift;
o segundo termo, g(X;, t) dW;, modela a difusdo, responsével pelas flutuagdes aleatérias.

Para obter uma intui¢do mais concreta sobre a dinamica dessa equagao, é util pensar em sua
forma discretizada no tempo. Consideremos pequenos intervalos de tempo A > 0. O movimento

browniano B; possui incrementos
Bt+A — Bt ~ N(O/ Ald)/

e, além disso, esses incrementos sdo independentes para intervalos disjuntos. Assim, podemos
representar o incremento como
Bt+A — Bt = \/Zsf,

onde & ~ N (0, I;) é uma variavel aleatéria independente a cada passo.
Substituindo esse termo na SDE

dXy = f(X;, t)dt + g(X, t) dBy,
obtemos a versdo discreta aproximada:
Xisn ~ Xi + f(Xe, t) A+ (X, t) (Brya — Be).
Usando a expressdo acima para o incremento browniano, isso se torna
Xipa = Xi + f(Xi, t) A+ g(Xi, t) VA ey

Essa equacdo descreve como o processo X; evolui passo a passo: a cada intervalo A, hd um
deslocamento deterministico dado por f(X;, t) A (o drift) e um deslocamento aleatério g(Xy, t) VA e;
(a difusdo).

Essa formulagdo é conhecida como o esquema de Euler-Maruyama, uma generalizacdo es-
tocastica do método de Euler para equagdes diferenciais ordinarias. A medida que A — 0, a
sequéncia X; A converge, sob condi¢des adequadas, para a solu¢do continua da SDE.

Exercicio 28. Considere o esquema de Euler—-Maruyama para simular uma equagio diferencial estocdstica
(SDE) da forma
dXt = f(Xt) dt + U'dBt,

onde By é um movimento browniano padrdo e ¢ > 0 controla a intensidade do ruido.
(a) Implemente a simulagdo de trajetérias para dois campos de drift diferentes:
filx)=—x e folx) =x—x°
(b) Gere vdrias trajetorias para cada caso, mantendo o mesmo valor de ¢ e do passo temporal A.
(c) Compare os comportamentos obtidos:

— Como o termo de drift influencia a dispersdo das trajetorias?

— Em que sentido o caso f»(x) = x — x> pode ser interpretado como um sistema com dois estados
de equilibrio?

(d) Plote em um mesmo grdfico uma trajetéria com drift e outra sem drift (isto é, f(x) = 0) para
visualizar a diferenga qualitativa entre difusdo pura e dindmica com for¢a restauradora.
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8.2 Equacao de Fokker-Planck

Considere um processo de difusdo governado pela SDE geral
dXt = f(Xt, t) dt + g(Xt/ t) dBt,

onde f é o campo de drift e g o coeficiente de difusdo. A fungdo g controla como o ruido atua sobre
cada componente do sistema — por exemplo, se g é uma matriz, o ruido pode ter intensidades e
correlagdes diferentes em cada direcéo.

A densidade de probabilidade p(x,t) associada a X; satisfaz a equagdo de Fokker-Planck
(também chamada de equagdo de Kolmogorov para frente):

% Y (f(a ) ple) + 1V (V- (88T x5 p(a 1)

O primeiro termo representa o transporte deterministico da densidade pelo campo de drift, en-
quanto o segundo termo descreve a difusdo espacial causada pelo ruido multiplicativo g(x, t) dB;.

No caso em que o ruido é isotrdpico e constante, isto é, g(x,t) = v/2D I, a equagdo se simplifica
para

W~ V- (F(x) plx ) D AP(x ),

onde D > 0 é o coeficiente de difusdo e A é o operador Laplaciano.

Essa forma mostra claramente a dualidade entre drift e difusao:
e otermo —V - (f p) concentra ou transporta massa segundo o fluxo deterministico;

* o termo D Ap espalha a densidade, suavizando descontinuidades e representando o efeito
do ruido.

A equacdo de Fokker-Planck pode ainda ser escrita como uma equagdo de continuidade:

Wo V) =)t - DY),

onde | é o fluxo de probabilidade. O primeiro termo de | corresponde ao transporte devido ao drift,
e o segundo termo é o fluxo difusivo induzido pela varia¢do espacial da densidade.

Aqui, o operador V - | representa o divergente do campo de fluxo J, isto é, a taxa liquida de
probabilidade que sai (ou entra) de uma pequena regido do espago. De forma intuitiva:

* se V-] > 0, hd mais probabilidade saindo do que entrando — a densidade p(x, f) diminui

localmente;

* se V-] < 0, hd mais probabilidade entrando do que saindo — a densidade aumenta

naquela regido.

Portanto, a equagdo de continuidade expressa o principio de conservagio de probabilidade: a
densidade muda no tempo apenas devido ao fluxo de probabilidade atravessando as fronteiras
das regides do espago.
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8.3 Amostragem de Langevin

A ideia central da amostragem de Langevin é usar uma dindmica estocdstica continua no tempo cuja
distribuicdo estaciondria coincide com uma densidade-alvo p(x). Queremos, portanto, construir
uma SDE cuja solugdo X; satisfaga

lim £(X;) = p(x),

t—o0

onde L£(X;) denota a lei (ou distribui¢do) do processo no tempo *.
Uma escolha natural é definir o drift como o gradiente do logaritmo da densidade:

dX; = Vlog p(X;) dt + V2 dB.

Essa SDE é conhecida como dindmica de Langevin (ou overdamped Langevin equation). O termo
deterministico V log p(X;) empurra as particulas em dire¢do as regides de maior probabilidade
da distribuicdo, enquanto o ruido gaussiano v/2 dB; garante que o processo explore todo o espago
de estados.

Se tomarmos pe(x) = p(x), queremos verificar que essa escolha satisfaz a condi¢do estacio-
ndria da equagdo de Fokker—Planck:

V- (Vg p(x) p(x)) = Ap(x).

Recordemos que o operador V representa o gradiente, e que o operador V- representa o
divergente. Aplicar o divergente a um gradiente produz o Laplaciano, denotado por A:

Ap(x) = V- (Vp(x)).

. ~ . . N p d?
Em uma dimensdo, o Laplaciano reduz-se simplesmente a segunda derivada ﬁ.

Pela regra da cadeia, sabemos que

Vp(x)

Viogp(x) = ()

Multiplicando ambos os lados por p(x), obtemos

Vp(x) = p(x) Vlog p(x).

Substituimos essa identidade no lado direito da equagao de equilibrio:

Ap(x) = V- (Vp(x)) = V- (p(x) Viogp(x)).

Portanto, o lado direito e o lado esquerdo da equagao estacionaria sdo idénticos:

V- (Viogp(x) p(x)) = V- (p(x) Vleg p(x)) = Ap(x).

Essa relagdo entre a SDE de Langevin e a Fokker—Planck mostra que o processo preserva a
densidade p(x) no equilibrio. Na pratica, a amostragem de Langevin consiste em discretizar
essa SDE (via o método de Euler-Maruyama) e usar as iteragdes resultantes para gerar amostras
aproximadamente distribuidas segundo p(x).
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Exercicio 29. Considere a densidade alvo p(x) = N'(x;0,1), isto é,

Queremos usar a dindmica de Langevin para gerar amostras dessa distribuigdo:
dX; = Vlog p(X;) dt + V2 dB;.
1. Derive o gradiente de log p(x). Mostre que
Viogp(x) = —x.

Observe que o termo constante — % log(27t) desaparece na derivada. Discuta o motivo pelo qual o
termo normalizador da densidade ndo afeta o gradiente.

2. Implemente a dindmica de Langevin:
Xt—',—A IXt—XtA—f— \/ZASt, EtNN(O,1>.

Use A = 0.01 e inicialize Xo ~ N(0,1). Gere trajetérias e verifique que o histograma das amostras
converge para a densidade p(x).

3. Versdo sem difusdo: Repita a simulagio removendo o termo aleatorio,
Xien = X — Xi A

O processo converge para qual valor? Explique o papel do ruido na manutengdo da variabilidade da
amostra.

4. Interpretagdo: Analise a dindmica obtida. O termo —X; A atua como uma forga de retorno a origem
(um pogo de potencial), enquanto o termo aleatdrio v/ 2/ e impede que o processo colapse nesse ponto,
mantendo a distribuigdo estaciondria N'(0,1).

. 1 . . . ., .

Note que o termo normalizador T3 1Mo influencia o gradiente V log p(x), pois é constante. Assim,
o comportamento da dindmica de Langevin depende apenas da forma relativa de p(x), e ndo da sua escala
global. Esse fato é fundamental: em métodos baseados em gradientes (como Langevin e Hamiltonian Monte
Carlo), apenas a derivada do logaritmo da densidade importa.

Exercicio 30. Considere o problema de gerar amostras de uma mistura bimodal de normais:
p(x) = s N(x;—3,1%) + § N'(x;3,1%).
O objetivo é usar a dinamica de Langevin para aproximar amostras dessa distribuigio:

dX; = Vlog p(X;) dt + V2 dB;.

1. Derive o gradiente de log p(x). Expresse Vlog p(x) em termos das densidades de cada compo-
nente da mistura e de suas médias.
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2. Implemente a dindmica de Langevin:
Xt+A :Xt+V10gp(Xt)A+ \/2A€t, Et NN(O,l).

Use A = 0.02 e inicialize Xog ~ N(0,5). Gere trajetérias e compare o histograma das amostras

obtidas com a densidade-alvo p(x).
3. Versdo sem difusdo: Repita a simulagio removendo o termo aleatorio,
Xt+A = Xt + VIOg p(Xt) A,

e observe o comportamento do processo. Ele converge para algum ponto especifico? O que muda em

relacdo a versdo estocdstica?

4. Influéncia da condicdo inicial: Inicialize o processo com Xo = 1 e repita o experimento. O
processo é capaz de explorar os dois modos da mistura? Discuta por que a escolha de Xy pode
influenciar a regido da distribuicdo onde o processo permanece por mais tempo.

Exercicio 31. Considere novamente a mistura bimodal
p(x) = L N (x;-3,1%) + L N (x;3,12),

e a dindmica de Langevin
dX; = Vlog p(X;) dt + V2 dB;.

1. Simule uma trajetéria longa da dindmica, iniciando em Xy ~ N(0,5). Plote o histograma das
amostras e o grdfico de posigio t — X;.

Discuta o que estd acontecendo no processo e como isso se liga com a matéria de MCMC.

2. Repita o experimento com vdrias trajetorias independentes cada uma com condigdo inicial dife-

rente, e compare o0s histogramas dos dois métodos.

8.4 Denoising Score Matching

Como vimos, a dinamica de Langevin
dXt = %Vx lOg p(Xt) dt -+ th

possui como distribui¢do estaciondria a propria densidade alvo p(x). De fato, pela equagdo de

Fokker-Planck associada,

api(x)
ot

vemos que py(x) = p(x) é uma solugdo estaciondria.

= Ve (Vs log p(x) pe(x)) + 3Api (),

O problema, entretanto, é que na pratica ndo conhecemos p(x) de forma explicita e portanto ndo
temos acesso ao seu gradiente V, log p(x), o score, que aparece diretamente no termo de drift da
dinamica de Langevin. O que dispomos, em geral, sdo apenas amostras independentes

X100, Xy ~ p(x),
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e queremos, a partir delas, construir um estimador para o score ou, de forma equivalente, um
campo vetorial sg(x) ~ Vlog p(x) que possa ser usado em dindmicas como a de Langevin para
simular a distribuigado alvo.

O objetivo do Denoising Score Matching (DSM) é aprender o score de uma distribuigdo de
probabilidade desconhecida p(x), definido por

s*(x) = Vylog p(x).

A ideia central do DSM é transformar o problema de estimar o score em uma tarefa de regres-
sdo supervisionada. Para isso, partimos de amostras x ~ p(x) e adicionamos ruido gaussiano
e ~ N(0,0?), obtendo dados corrompidos

O método define como alvo de regressao

e treina um modelo sy(¥, ) para aproximar esse alvo a partir do dado corrompido. A fungdo de
perda considerada é

£(6) = Exnp Bernioe) |[ls0(2,0) =[]

Para entender por que esse procedimento funciona, comegamos observando que a varidvel

corrompida X possui densidade

10(®) = [ p(x) 9ol =) d,

onde ¢, é a densidade gaussiana \(0,0?). Portanto, g, é a convolugdo de p com uma gaussiana.
O score dessa densidade suavizada é

Derivando sob o sinal de integral,

€ como

P (% —x),

temos
X —X

o2

Vo (%) = /

Dividindo por g,(%) e lembrando que a densidade conjunta de (x,%) é dada por p(x,%) =

p(x) ¢ (% — x) dx.

p(x) s (% — x), podemos reescrever o integrando em termos da distribui¢do condicional de x
dado ¥: ~
p(x) po(x —x)

qo(%
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Substituindo essa expressdo na férmula do gradiente, obtemos

x—X
o2

Vilogges(%) = / p(x | %)dx,

0 que mostra que o score de g, é precisamente a esperanca condicional

Assim, mostramos que a esperanca condicional do alvo t dado % é exatamente o score da

xX—X
o2

Viloggs (%) =E [

densidade suavizada g,. Como a perda quadratica é minimizada quando sy(%,0) = E[t | %],
segue que o estimador 6timo do DSM é

s*(%,0) = Vzlogq,(%).

Note que, fixado o valor de ¢, o DSM estd aprendendo o score ndo da densidade original
p(x), mas da versdo suavizada q,(x) = (p * ¢,)(x), obtida ao convoluir p com uma gaussiana de
variancia 0. Ou seja, estamos removendo detalhes finos da distribuicdo original e focando nas
variagdes mais suaves de p.

O campo vetorial V,logg,(x) aponta na dire¢do em que a densidade suavizada mais cresce:
ele indica como deverfamos mover uma particula que foi corrompida pelo ruido para restaurar
a estrutura de p.

Assim, quando treinamos sy (x, o) para aproximar E[(x — X) /02 | ¥ = x|, estamos aprendendo
como “desfazer” o ruido gaussiano de nivel ¢. Por isso o nome denoising score matching.

Amostras originais x; Amostras corrompidas Xi=x;+€, 0=0.2 Vetores de denoising £ - X;

2.04 2.0 ® Original (com seta)

Corrompido (com seta)
15

154 15

10 :;C"!.: a'.ft-{'. 104 10 - o e S, .
05
K .%. 'é 0.5 05 A :i-
1‘ il <t Ae % . 4 ¥
00y ¢,° ?' L3 .(’ 0.0 0.0 A ." L>) (!
Y ® ¢ .
-0.5 .::‘I .“‘*'.‘v 05 -0 P Ll -"ﬁ ‘

-10  -05 0.0 05 1.0 15 2.0 -1.0 -05 00 05 10 15 2.0 -10 -05 00 05 1.0 15 20

8.4.1 Estimando o score na pratica

Na dedugdo anterior vimos que, para um valor fixo de ¢, o modelo sy(%,0) treinado com o
Denoising Score Matching aprende o score da densidade suavizada g, (x). Na prética, entretanto,
ndo queremos apenas um tnico valor de ¢, mas uma colecdo de niveis de ruido que permitam
capturar a estrutura de p(x) em diferentes escalas.

Usualmente escolhemos uma escala geométrica de valores

Umax>k/(K_1) k=0 K—1

Ok = OUmin <

Omin
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de modo que os niveis de ruido cubram uniformemente vérias ordens de magnitude, indo de
ruido forte (0max) a ruido fraco (0min). Para cada amostra x; e para cada oy, podemos gerar vérias
versOes corrompidas
= 2
Xijk = Xi+€ijk ei ik ~ N(0,0¢1),
e calcular os respectivos alvos de regressao
Sirj/k

tijk = :
1] 2
%k

Dessa forma, podemos expandir o conjunto de dados criando vdarias amostras supervisionadas
(JZ,-,j,k, Ok, t,-,j,k), que descrevem, para diferentes niveis de ruido, a direcdo de denoising a ser apren-
dida.

O préximo passo € ajustar um modelo de regressdo sy que receba como entrada o ponto
corrompido £ e o valor de o, e aprenda a prever o vetor . Esse modelo pode ser uma rede neural,
mas também algo mais simples, como uma 4rvore de decisdo ou um modelo de regressao nao
linear. O objetivo é que, ap6s o treinamento, o campo aprendido satisfaca aproximadamente

se(%,0) =~ Vzlogg, (%),

fornecendo uma boa estimativa do score da densidade suavizada. Com isso, temos um modelo
capaz de indicar, para cada ponto corrompido, em que direcdo ele deve se mover para recuperar
regides de alta densidade de p(x).

Campo aprendido (Regressao Linear) Campo aprendido (Floresta Aleatéria)
0=0.5 0=0.5

2.0 original

154

1.0 1

0.5

0.0

0.5

—1.0 1

—1.5 1

Em resumo, o treinamento do DSM pode ser realizado seguindo os seguintes passos:

1. Definir uma escala geométrica de valores de ruido oy, ...,0k, que vai do ruido mais forte
(0max) @0 mais fraco (0min). Essa escala define o quanto cada amostra serd corrompida.

2. Para cada amostra x; do conjunto de dados e para cada nivel de ruido o}, gerar algumas
versOes corrompidas %;;x = X; + €;jx, COM & jx ~ N(0, (f,?l ). Isso aumenta o tamanho do
conjunto de treinamento e ajuda o modelo a aprender a remover diferentes intensidades de
ruido.
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3. Calcular o alvo de regressdo para cada par (fi,j,k, 0}) como tijk = —€ijx/ 0',%, que representa a
dire¢do na qual a amostra corrompida deve ser movida para retornar a distribuigao original.

4. Montar um conjunto de dados supervisionado formado por pares de entrada e saida
([%ik %], tijk). O valor de oy é incluido como uma feature adicional para indicar o nivel de

ruido daquela amostra.

5. Ajustar um modelo de regressdo — que pode ser simples, como uma Floresta Aleatéria —
usando essas amostras expandidas. O modelo deve aprender a prever f a partir de [%, 0.

6. Apos o treinamento, o modelo resultante sy(X, o) fornece uma aproximagédo do campo de
score Vzlogg,(X), indicando para cada ponto corrompido em qual direcdo ele deve se
mover para se aproximar de regides de alta densidade de p(x).

Exercicio 32. Neste exercicio, vamos implementar o treinamento de um modelo de Denoising Score
Matching (DSM) em um conjunto de dados sintético. O objetivo é aprender o campo de score s9(X,0) a
partir de amostras corrompidas, conforme discutido em aula.

1. Gere um conjunto de dados bidimensional usando a fungio make_moons abaixo.
2. Construa uma escala geométrica de valores de ruido usando a fungido geometric_sigmas.

3. Para cada valor de o, corrompa as amostras adicionando ruido gaussiano e ~ N (0, o2l ), e calcule o
alvo t = —e /o>

4. Monte um conjunto de dados supervisionado contendo como entrada o par [%, | e como saida o vetor
t.

5. Treine um modelo de regressio a sua escolha (por exemplo, regressdo linear, rede neural, ou floresta
aleatéria) para aprender a mapear %, 0] — t.

6. Fixe um valor de o e visualize o campo aprendido sobre uma grade bidimensional de pontos, compa-
rando visualmente os resultados de diferentes modelos.

8.4.2 Etapa de Inferéncia via Langevin

Uma vez treinado o modelo de score sg(%,0), podemos utilizé-lo para gerar novas amostras de
uma distribui¢do aproximando p(x). A ideia é usar o campo aprendido como uma estimativa do
gradiente do logaritmo da densidade, e entdo realizar uma simulagido do processo de Langevin
Anelado (Annealed Langevin Dynamics — ALD).

O método segue a dindmica estocéstica

a.
Xp = X1+ EI so(xi—1,07) + /i z, zr ~ N(0,1),

7

onde cada nivel de ruido o; controla a escala das atualizagbes e a; é o passo de integragdo
proporcional a ¢?. Em termos préticos, seguimos a sequéncia de sigmas do maior (0max) ao
menor (0min), de modo que as primeiras itera¢cdes facam o ponto explorar amplamente o espago,
e as ultimas permitam um refinamento local.

O algoritmo pode ser descrito assim:
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. Inicializagdo: Inicie xp como uma amostra de uma distribuicdo de ruido, por exemplo
2
xo ~ N(0, 0ax ).

2. Iteragdo sobre os niveis de ruido: Para cada ¢; da sequéncia geométrica:

* Calcule o passo de integragdo a; = ¢- (0?/02,,), onde ¢ > 0 é um parametro fixo de
escala.

* Repita T vezes (por exemplo, T = 10):
X x+ Sso(x,09) + Vaiz, z~N(0,I).

3. Saida: Apds percorrer todos os niveis de ruido, o vetor final x7 € uma amostra aproximada
da distribuigdo de interesse p(x).

Dataset original (moons)

Amostras geradas via Langevin

2.0 2.0

1.5 1 1.5 1

1.0 1.0 1 .~ 9

0.5 0.5

0.0 0.0
-0.5 —0.5 1
-1.0 - -1.0
-1.5 ‘ T T T -1.5 T . ‘ T

-2 -1 0 1 2 3 -2 -1 0 1 2 3

Figura 8.2: Exemplo de amostragem via Annealed Langevin Dynamics. As trajetérias comegcam em
ruido grande e gradualmente convergem para as regides de alta densidade de p(x).

A intuicdo é que, nas primeiras escalas de ruido, o modelo aprende apenas a estrutura global
de p(x) — as regides de alta densidade —, e conforme ¢ diminui, o processo de Langevin refina
as amostras nessas regides, capturando detalhes finos da distribuicao.

Exercicio 33. Neste exercicio, vocé deverd implementar o processo de Annealed Langevin Dynamics
(ALD) para gerar novas amostras de uma distribuigdo aproximando o conjunto de dados moons.
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1. Gere o conjunto de dados bidimensional usando a fungio make_moons da biblioteca sklearn. datasets.

2. Treine um modelo de Denoising Score Matching (DSM) utilizando uma escala geométrica de
valores de ruido oy > o2 > - - - > 0k, conforme descrito na se¢do anterior.

3. Implemente o algoritmo de Annealed Langevin Dynamics, usando o campo aprendido sg(x,0)
para atualizar as amostras segundo

a.
Xt = Xt-1+ EI so(Xt—1,01) + Vi zi, ze ~ N(0,1),

percorrendo os niveis de ruido do maior (omax) A0 menor (Tmin).

4. Apds a simulagio, visualize lado a lado o conjunto de dados original e as amostras geradas pelo
processo de Langevin. Compare visualmente se as amostras geradas reproduzem a estrutura caracte-

ristica do moons.

Exercicio 34. Neste exercicio, vocé deverd pensar em como adaptar todo o processo de Denoising Score
Matching (DSM) e a etapa de inferéncia via Annealed Langevin Dynamics (ALD) para o caso condici-
onal, em que desejamos modelar a distribuicdo p(y | x).

Dados reais Amostras geradas (ALD condicional)
2.0 31
15 4
2
1.0
0.5 11
= 2 =
0.0 4 ;30
. 0
"%
—0.5 4 ag;
-1.04 2. -1
-1.5 4 e
-2 4
-20 -15 -1.0 -0.5 00 05 1.0 15 2.0 -2.0 -15 -1.0 -0.5 00 05 1.0 15 2.0
X X

1. Relembre que, no caso ndo condicional, o modelo sg(%,0) é treinado para aproximar o score da
densidade suavizada V zlog q, (%), onde q, é obtida pela convolugio de p(x) com ruido gaussiano.
Pense em como essa ideia pode ser estendida para o caso condicional, em que queremos o score

Vylog 90 (y | x).

2. Escreva como ficaria o conjunto de treinamento supervisionado para o modelo condicional. Dica:
ao corromper as varidveis de saida y; com ruido gaussiano €;j. ~ N(0,0%1), o alvo passa a ser
tijk = —€ijx/ 0%, e 0 modelo deve receber i j ks Xi, O] como entrada.

3. Implemente o treinamento de um modelo de score sg(y,x,0) que aprenda o campo condicional de
denoising. Vocé pode usar um modelo simples, como uma Floresta Aleatéria ou uma rede neural.

4. Adapte o algoritmo de Annealed Langevin Dynamics para o caso condicional, mantendo x fixo e
atualizando apenas y:

“.
Vi =7Yi1+ 5’ so(Ye-1,%,07) + oz,  ze ~N(0,I).
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5. Escolha um conjunto de dados simples para testar o modelo, por exemplo:
e Gere pares (x,y) com y = sin(2x) + |x| e, e ~ N (0, 1).
e Treine o modelo de score condicional.

* Use 0 ALD condicional para gerar novas amostras de y para valores fixos de x.

6. Visualize os resultados mostrando, para alguns valores fixos de x, as distribuicdes das amostras
geradas de y | x, comparando-as com os valores verdadeiros observados.



Capitulo 9

Bootstrap

9.1 Uma visdao pragmatica de Bootstrap

O nome bootstrap tem origem indireta nas histérias fantasticas do Bardo de Miinchhausen, per-
sonagem do século XVIII conhecido por narrar feitos impossiveis. Em uma de suas aventuras, o
Bardo conta ter conseguido sair de um pantano puxando a si mesmo pelo cabelo (junto com o
cavalo), uma faganha evidentemente absurda. A expressdo inglesa posterior “to pull oneself up by
one’s bootstraps” — erguer-se puxando as proprias botas — tornou-se uma metafora para realizar
algo sem ajuda externa, e foi essa a imagem que inspirou Efron (1979) ao nomear seu método:
um procedimento que, metaforicamente, se ergue sozinho.

A ideia central do método de bootstrap é substituir a incerteza sobre a distribuigdo popula-
cional F pela incerteza induzida pela distribuicio empirica E,. Formalmente, seja X1,..., X, ~ F
uma amostra i.i.d. e seja o pardmetro de interesse 6 = t(F), para algum funcional ¢ definido em
um espaco apropriado de distribui¢des de probabilidade. O estimador empirico é § = (F,), com

11’[
= — 1{X; < xt.
n;{l—x}

O bootstrap consiste em gerar amostras X7, ..., X}, i.i.d. de E, (isto é, reamostrar com reposigao
dos dados observados), e entdo computar

0" =t(F}).
A distribuigdo condicional de 8* dado os dados é usada como aproximagio para a distribuigao
amostral de 6.

Exemplo 35 (Média amostral). Considere uma amostra X, ..., X, ~ F e o estimador usual da média

_ 12
=X= E;Xl

O objetivo é quantificar a incerteza de 0, isto é, como ela variaria se repetissemos o experimento vdrias
vezes. Em termos formais, queremos aproximar a distribuigdo amostral de 9,

P (Vi —0) <a),

133
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onde 6 = E [X].

Em situagdes simples, podemos obter essa distribuicdo de forma analitica: se F for normal com varidncia
(72, entdo

V(X —8) ~ N(0,0?).

Entretanto, o bootstrap permite estimar a variabilidade de X sem supor nada sobre F. A ideia é construir

uma amostra artificial que imite o que aconteceria se o experimento fosse repetido.

O procedimento é o sequinte:

(1) A partir da amostra observada Xy, ..., Xy, sorteie com reposi¢do n observagdes X7, ..., X;. Cada
amostra reamostrada define uma distribuicdo empirica F,;.

(2) Calcule a média de cada amostra reamostrada:

(3) Repita o processo B vezes (por exemplo, B = 1000), obtendo X*(), ..., X*(B),

O conjunto dessas médias forma wma aproximagdo empirica da distribuigio de X. O desvio padrio das

médias reamostradas,

&boot = L 3 (X*(b) - }?*)2/ i* =
B-1/4

|~

y ),
b=1

é uma estimativa do erro padrio de X.
Como consequéncia, é possivel construir intervalos de confianga para 6 usando os quantis das médias

bootstrap:
boot __ [r* 7k
0% = [X{oy2) X(i—ay))s
onde os termos entre parénteses denotam os quantis empiricos da distribuicdo das médias reamostradas.

Comparacao entre distribuicdo real e bootstrap (n=30)

Distribuicio real de &
14 Distribuicao bootstrap condicional
-—- Média observada

Densidade
I3 o
o ©

I
IS

o
N

o
=)

4.0 4.5 5.0 5.5 6.0
Valor da média amostral

A Figura 35 compara a distribuicio verdadeira da média amostral (obtida por simulagdo Monte Carlo)
com a distribuicio condicional gerada pelo bootstrap, para F = N'(5,22) e n = 30.
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Exemplo 36 (Mediana). Enquanto a média é um estimador linear e de ficil andlise, a mediana apresenta
um comportamento mais sutil. Se X1,..., X, ~ Fe0 = F,1(0.5), sua variabilidade depende da densidade
de F no ponto da mediana 6, pois pequenas flutuagoes em F se traduzem em variagbes maiores ou menores
na posigdo onde F(x) = 1/2.

Uma forma breve de derivar a variancia assintdtica é a sequinte. Como F(0) = 1/2 e F,(8) = 1/2,
podemos relacionar § e 0 por uma expansio local de F em torno de 6:

F(0) ~ F(0) + f(6)(0 - 0),

onde f(0) = F'(8). Como F, converge uniformemente para F (Teorema de Glivenko—Cantelli), é licito
substituir F(-) por E,(-) nessa aproximagio sem alterar o termo assintético dominante — a diferenca é da
ordem 0,(1/+/n). Substituindo F() por E,(8) = 1/2, obtemos:

0~ F,(0) — F(8) + f(6)(8 — 0).

Multiplicando por \/n,

Pelo Teorema Central do Limite empirico,
Vvn(E.(0) — F(0)) = N (0, F(6)(1— F(8))) = N(0,1/4).

Portanto,
A 1
Ve N —.
ar [0] i f{0)

Comparacao centralizada: Real vs Bootstrap (Normal(0,1), n=200, B=10000)
i Real (centrada em 6)

Bootstrap (centrada em 6)

Densidade
o

N

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Desvio em relagdo a mediana

O bootstrap oferece uma alternativa direta. Partindo da amostra observada, reamostra-se com reposigio
B vezes e calcula-se a mediana em cada reamostra,

g*(b) — median(XT(b), ... ,Xz(b)), b=1,...,B.
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A variabilidade entre as medianas reamostradas fornece uma estimativa do erro padrio de 0,

o L B (é*(b) _ g*)ZI 0% — l XB: f*(b)
B-1/3 B =
Dessa forma, mesmo sem conhecer f(6) nem a forma de F, é possivel avaliar empiricamente a incerteza da

mediana.

Exercicio 35. Reproduza os experimentos dos exercicios anteriores.

9.2 Uma visdo tedrica de Bootstrap

A primeira vista, o funcionamento do bootstrap pode parecer misterioso. Afinal, estamos ten-
tando aproximar a variabilidade de um estimador — algo que depende da distribui¢do popula-
cional desconhecida F — usando apenas a distribuigdo empirica E,, construida a partir de uma
Unica amostra. Em outras palavras, substituimos o préprio objeto que queremos inferir por uma
aproximacdo baseada nos dados: o método “ergue-se” sobre si mesmo, exatamente como sugere
seu nome.

O fato de essa substitui¢do produzir resultados validos ndo é trivial. Nao hd, a principio,
nenhuma razio 6bvia para que as flutuagdes de um estimador calculado a partir de F, reflitam
corretamente aquelas que surgiriam se repetissemos o experimento sob F. Ainda assim, sob
condigdes gerais, o bootstrap funciona — e de forma surpreendentemente robusta.

9.2.1 A desigualdade de Dvoretzky-Kiefer-Wolfowitz

Antes de entender por que o bootstrap funciona, é preciso quantificar o quao bem a distribuigao
empirica E, aproxima a verdadeira F. A desigualdade de Dvoretzky—Kiefer-Wolfowitz (DKW) é
o ponto de partida: ela fornece uma garantia ndo assintética, vélida para qualquer 7, de que as

duas fungdes de distribui¢do estdo préximas com alta probabilidade.

Mais precisamente, para amostras i.i.d. Xy, ..., X, ~ F, vale que
P (sup |Fu(x) — F(x)| > 8> <Ce™, Ve>0.
X

Essa desigualdade mostra que o erro uniforme entre F e £, decai exponencialmente com .
Em particular, F, converge quase certamente para F, o que é o contetido do teorema de Gli-

venko—Cantelli.

Esse resultado é notadvel por duas razdes. Primeiro, ele é completamente ndo assintético: a
probabilidade de desvio pode ser controlada explicitamente para qualquer n. Segundo, ele ja
sugere a ideia central do bootstrap — se F, estd uniformemente préxima de F, entdo estimadores
baseados em uma ou outra devem ter comportamentos muito semelhantes.

O primeiro ingrediente para a prova da DKW ¢ a desigualdade das diferengas finitas, tam-
bém conhecida como desigualdade de McDiarmid. Ela fornece um limite de concentragdo para
fungdes de varidveis independentes cujo valor ndo muda muito quando uma tnica observagao é
alterada.
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Teorema 12 (Desigualdade de McDiarmid). Sejam Xi,..., X, varidveis independentes assumindo
valores em um conjunto arbitrdario X, e seja f : X" — R uma fungdo tal que

|F(x1, oo Xiyee o xn) — f(x1,000,xh00 x| < g
1

para todo i e para todos os valores possiveis das varidveis. Entdo, para todo € > 0,

2
P (f(Xy,...,Xn) —E[f(X1,...,Xu)] > €) < eXP<—3€1Cg> :

A ideia é simples: se cada varidvel individual tem influéncia limitada sobre o valor final
de f, entdo f(Xj,..., Xs) ndo pode se desviar muito de sua média. Essa desigualdade é uma
generalizagdo do lema de Hoeffding para fung¢des simétricas e ndo lineares das observagoes.

No caso da DKW, aplicamos esse resultado a fungdo

f(Xq,..., Xn) = sgp |E,(x) — F(x)].

Desigualdade de Dvoretzky-Kiefer-Wolfowitz: diferenga suprema

1.0F— F(x) (CDF verdadeira)
— ﬁ,,(x) (empirica)
— sup|F, —F|

0.8

0.6

F(x) e Fa(x)

0.4r

0.2¢

0.0

Observe que alterar um tnico X; muda no maximo um termo da soma que define F,(x), e
portanto o valor de f s6 pode variar em 1/n. Assim, podemos tomar ¢; = 1/n para todo 7, o que
da

"o, 1 1
Y e =
— n n
i=1

Substituindo isso na desigualdade de McDiarmid, obtemos
P <Sup |Ea(x) — F(x)| — B |sup |Fy(x) — p(x)|] > 8) < e
x X

Esse é o passo essencial da prova da DKW: ele mostra que a distancia uniforme entre £, e F
estd fortemente concentrada em torno de sua média. O passo seguinte consiste em controlar o
valor esperado E [sup, |E,(x) — F(x)]].

Para controlar o valor esperado de sup, |F,(x) — F(x)|, precisamos entender primeiro um
caso mais simples: o comportamento do valor esperado do méximo de um numero finito de
varidveis aleatorias.
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Lema 1. Sejam Z1, ..., Zy varidveis aleatdrias independentes, centradas e subgaussianas com pardmetro

2

o“, ou seja,

E [efzf} <2 WteR,j=1,...,k
Entdo
E Lrg%(zj} < oy/2logk.
Demonstracdo. Para todo t > 0,

E |maxZ; <110 IE[etmaXfo} :110 E |maxet%i <110 E ietzf :110 iIE{etZ/}

] J j=1

Pela hipétese subgaussiana, [E [¢/%] < ¢/”*/2 para todo j, logo
1 2,2 logk to?
. < - teo /2 _ g .
E [m}ax Z]] < tlog(ke ) = + -

Minimizando o lado direito em t > 0, obtemos t* = /2logk/c, e portanto

. < .
E [g%(z]} <oy/2logk

O]

Como ja vimos, varidveis aleatdrias limitadas sdo subgaussianas. Em particular, se |Z] < 1

quase certamente e E [Z] = 0, entdo
E {etz} < et2/2, Vt € R,

ou seja, Z é subgaussiana com parametro o = 1.

No caso do processo empirico, cada termo

A

F,(x) — F(x) =

S| =

: (1{X; <x} — F(x))

~

é a média de n variéveis independentes, centradas e limitadas no intervalo [—1, 1]. Portanto, cada
uma é subgaussiana com parametro 1/, o que implica que o vetor (F,(x;) — F(x1),..., E.(xx) —
F(x¢)) é formado por varidveis subgaussianas com desvio ¢ = 1/+/n.

Aplicando o lema anterior, obtemos

f(xi) — F(x)]] <
E {gjaéchn(x]) F(xj)|| <

V1ogk,

S0

para alguma constante universal C > 0.

No entanto, ainda resta um detalhe importante: o supremo em sup, |F,(x) — F(x)| é tomado
sobre todos 0s x € R, e ndo apenas sobre um ntimero finito k de pontos. A primeira vista, isso
poderia invalidar o argumento anterior. Mas, no caso do processo empirico, esse supremo é de
fato atingido em um conjunto finito de valores.
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Como F, é uma fungdo em degraus que muda apenas nos pontos observados X, .. ., X,, entre
duas observagdes consecutivas a fun¢do permanece constante. J4 F(x) é continua e mondtona
crescente, de modo que a diferenca |F,(x) — F(x)| atinge seu maximo exatamente nos extremos
desses intervalos. Portanto, para calcular o supremo, basta avaliar a diferenca em um ntimero
finito de pontos — tipicamente nos extremos dos intervalos (X;), X(i11))-

Com isso, o problema continuo se reduz a um maximo discreto sobre aproximadamente n + 1

pontos, e o resultado anterior aplica-se diretamente. Assim, podemos usar 0 mesmo controle

E [sup I£,(x)  F(3)| < e,

Com isso, temos todos os elementos da prova. A desigualdade de McDiarmid garante que

P (sup () = F(x)| < B [sup £y (x) = F(2)]| > ¢) <2

Por outro lado, mostramos que o valor esperado do supremo é pequeno,

E [sup () - F| 5 o

Combinando as duas estimativas, obtemos uma forma aproximada da desigualdade de Dvo-
retzky-Kiefer—-Wolfowitz:

P (Sup |Fa(x) = F(x)| > e+ q/%") < e 2,

para alguma constante universal C > 0.

Essa ndo é ainda a forma exata da desigualdade de Dvoretzky—Kiefer-Wolfowitz, pois sua
demonstracdo completa requer argumentos técnicos mais delicados — em particular, uma ana-
lise precisa do comportamento do processo empirico e de seu valor esperado. Ainda assim, o
resultado acima ja captura a esséncia da DKW: a diferenca uniforme entre F, e F é tipicamente

da ordem 1/+/1, e as flutuagdes em torno desse valor decaem exponencialmente com ne?.

9.2.2 Bootstrap e pontes brownianas

A desigualdade de Dvoretzky—Kiefer-Wolfowitz fornece uma nog¢do quantitativa de quao proé-
xima a distribuicao empirica £, estd de F em probabilidade. Ela mostra que, com alta probabi-
lidade, o erro uniforme é pequeno. No entanto, essa informacdo ainda é limitada: ela descreve
apenas a magnitude do desvio, mas ndo sua forma ou distribui¢do assintética.

Para entender de fato por que o bootstrap funciona, precisamos ir além da convergéncia
em probabilidade e estudar a convergéncia em distribuigdo do processo empirico. Em outras
palavras, queremos saber como as flutuagdes de £, em torno de F se comportam quando 1 — 0.

Teorema 13 (Teorema de Donsker). Sejam Xy,...,X, ~ F i.id. com fungio de distribuicdo continua
F. Defina o processo empirico como
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Entdo G, converge em distribuigdo para um processo gaussiano centrado Gr com covaridncia

Cov (Ge(x), Ge(y)) = F(x Ny) — F(x)F(y)-
O processo limite Gp é chamado de ponte browniana associada a F.

Quando F(x) = x em [0, 1], o processo empirico se reduz ao caso uniforme:

Gu(t) = vn(E,(t) —t), te]o,1].

Pelo Teorema de Donsker, temos que G, = By, onde By(t) é a ponte browniana padrio, um processo
gaussiano centrado com covariancia

Cov (By(s), Bo(t)) = min(s, t) — st.

Lembrando que, por construgdo, o processo By(t) é centrado, isto é, [E [By(t)] = 0 para todo
t € [0,1]. Tomando entdo s = f,

Var [Bo(t)] =t —t* = t(1 — t),

0 que implica que a variancia é maxima no meio do intervalo (t = 1/2) e decresce até zero nos
extremos. Isso mostra que o processo necessariamente satisfaz By(0) = By(1) = 0 — o inicio e o
fim sdo fixos, mas entre eles o comportamento é aleatério e gaussiano.

Intuitivamente, portanto, uma ponte browniana é um movimento browniano “amarrado” nas
extremidades: comeca em zero, flutua livremente no interior, e é progressivamente puxado de

volta até atingir zero novamente em t = 1.

Simulacao de Pontes Brownianas via Euler-Maruyama

0.5

0.0f

Bo(t)

—0.

U’!

-1.01

_15 L

0.0 0.2 0.4 0.6 0.8 1.0

Podemos agora perguntar: que tipo de equagdo estocdstica seria capaz de gerar um pro-
cesso com esse comportamento? Um movimento browniano comum W; é livre: suas flutua-
¢des acumulam-se ao longo do tempo, e sua varidncia cresce linearmente, Var [W;] = t. Para
transformd-lo em uma ponte, precisamos forga-lo a retornar a zero em t = 1. Isso pode ser feito
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introduzindo um termo de drift que “corrige” a trajetéria conforme o tempo avanga, puxando o
processo de volta a origem.
A ponte browniana padrio pode ser descrita como a solu¢do da equacado estocastica

Bo(t)

dBy(t) =

O termo de ruido dW; representa o movimento browniano livre, enquanto o termo de drift
—By(t)/(1 —t) atua como uma forga restauradora que cresce quando t — 1. Essa forga é justa-

mente o que garante que o processo retorne a zero no instante final.

Para ver isso de forma intuitiva, considere a discretizacdo de Euler-Maruyama:

At
Bran = Bi(1- 1ftk) +VALE, G~ N(O01).

Nos primeiros passos, o fator multiplicativo 1 — ﬁ—ttk é proximo de 1, e o processo se comporta
como um movimento browniano comum. A medida que t; se aproxima de 1, o denominador
1 — t; diminui e o fator de corregdo se aproxima de zero, fazendo com que o termo deterministico

anule o valor atual do processo. No tltimo passo, quando 1 — t; = At, temos
Byy1 = VAt G ~ N(0,At),

mostrando que o processo termina praticamente em zero, restando apenas um ruido residual
que desaparece no limite At — 0.

Assim, o termo de drift —By(t)/(1 — t) surge naturalmente como o0 mecanismo que, ao longo
do tempo, ajusta continuamente as trajetérias para que todas convirjam exatamente a By(1) = 0.
Em termos geométricos, trata-se de um movimento browniano sujeito a uma forga eléstica cada
vez mais intensa, que o “puxa” para a origem conforme o tempo restante se esgota.

Comparacéao de 90% de cobertura: Processo empirico vs Ponte browniana associada a normal (n = 1000)

1.00 Envelope 90% - Processo empirico
Envelope 90% - Ponte associada & normal
— Média Go(x)
Média Ponte Normal

0.75

0.50

o
N
o

R S T

VA(ER(X) = F(X)
°
>
8

|
o
N
o

i
=3
o
o

=0.75

-1.00

Seguindo a mesma légica do caso uniforme, o processo limite do Teorema de Donsker para
uma distribuicdo qualquer F também deve satisfazer uma condic¢do de fronteira andloga. De fato,

vimos que a covariancia do processo limite é
Cov (Gr(x), Gr(y)) = F(x Ay) — F(x)F(y),

o que implica, para x =y,
Var [Gp(x)] = F(x)(1 — F(x)).
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Essa expressdo mostra que, assim como na ponte padrdo, a varidncia é nula nos extremos F(x) =
0 e F(x) =1, ou seja, o processo também deve comegar e terminar em zero — apenas agora as
“bordas” sdo determinadas pelos quantis de F.

Uma maneira natural de entender esse comportamento é pensar que o eixo do tempo foi re-
parametrizado pelo mapa u = F(x). No caso uniforme, o tempo é o proprio parametro ¢ € [0,1];
mas, quando F ndo é identidade, o processo ndo evolui linearmente em x, e sim de acordo com a
probabilidade acumulada. Regides em que F cresce rapidamente (alta densidade) correspondem
a “intervalos de tempo curtos”, e regides onde F cresce lentamente funcionam como “intervalos
longos”. Portanto, o processo limite pode ser visto como uma ponte browniana padrao tracada
no eixo de probabilidade:

=
o

[ == F(x)=®(x)
— Fn(X) = F(x) + 2B, (F(x))

Distribuicao acumulada
o o ©
S [e)] oo

©
N}

o
o
T

Essa simples mudanga de varidvel ja explica a estrutura da variancia F(x)(1 — F(x)) e as
condigdes de fronteira.

Se quisermos descrever de forma aproximada a dindmica correspondente no eixo x, basta
notar que cada incremento infinitesimal du = f(x) dx representa a passagem de tempo efetiva
no dominio de F. Substituindo o tempo t por u = F(x) na equagdo da ponte padrdo, obtemos

informalmente
dGr(x) = _15(;2@ Gr(x) dx + \/f(x) dW;.

Mas, mais importante do que a equagdo, € a interpretacdo geométrica: a ponte associada a F é
0 mesmo movimento browniano “amarrado” nos extremos, porém tracado sobre um eixo nao
linear — o eixo da probabilidade. Em regides densas, as flutua¢des sdo mais comprimidas; em
regides raras, mais espacadas — mas, em todos os casos, o processo parte de zero e retorna a

zero no final.

Exercicio 36. Considere X1, ..., X, ~ N(0,1) e defina

onde E, é a CDF empirica e F(x) = ®(x).
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Compare G,(x) com a ponte browniana associada a F, que satisfaz

dGF<X) = 15( 2 dx—i—\/

Use Euler—-Maruyama no intervalo x € [—3.5,3.5] com malha uniforme:

Gry1 = G — 1f( () Gr Ax +\/f(x¢) &VDx, & ~N(0,1), Go=0.

Tome n = 1000, gere vdrias trajetdrias independentes de ambos os processos e trace o envelope de 90%

ponto a ponto para comparar visualmente. O envelope pode ser obtido tomando, para cada xy, os percentis
5 e 95 das trajetérias simuladas, por exemplo em Python:

low, high = np.percentile(G_list, [5, 95], azis=0).
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Capitulo 10

Estratégias para acelerar codigos em
Python

10.1 Profiling com cProfile

z

Antes de otimizar, é essencial medir onde o tempo realmente estd sendo gasto. O moédulo
cProfile, da biblioteca padrdo do Python, permite gerar um perfil de execugdo mostrando quan-
tas vezes cada fungdo foi chamada e quanto tempo ela consumiu.

O uso mais simples é direto pelo terminal, aplicando o profiler a um script:

# Executa o script inteiro e mostra estatisticas

python -m cProfile meu_script.py

# Salva os resultados em arquivo para analise posterior

python -m cProfile -o saida.prof meu_script.py

Rodando pelo terminal

O arquivo gerado pode ser inspecionado com o médulo pstats, que permite ordenar e filtrar
resultados:

python -m pstats saida.prof

# Comandos uteis no prompt do pstats:

# sort time (ordena pelo tempo interno da funcao)
# sort cumtime (ordena pelo tempo acumulado)

# stats 20 (mostra as 20 funcoes mais custosas)
# callers func (quem chama ’func’)

# callees func (quem ’func’ chama)

Explorando com pstats (terminal)

Também ¢é possivel usar cProfile dentro do c6digo, o que facilita em notebooks ou quando

queremos medir apenas um trecho especifico:

import cProfile, pstats, io

pr = cProfile.Profile()

145
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pr.enable ()

# --- codigo a ser medido ---
resultado = algoritmo_pesado ()
B o o e e e o

pr.disable ()

s = i0.S8tringI0()

ps = pstats.Stats(pr, stream=s).sort_stats( )
ps.print_stats (10) # mostra as 10 funcoes mais custosas

print (s.getvalue())

N

w

&1

Usando cProfile dentro do cédigo
As duas métricas principais sdo:
* time: tempo gasto apenas dentro da fungdo, sem contar chamadas internas.
* cumtime: tempo acumulado, incluindo todas as fungdes chamadas.

Em geral, comega-se ordenando por cumtime para encontrar o caminho mais caro da execugéo.
Depois, olhar o time ajuda a identificar fung¢des individuais que valem otimizagao.

A seguir montamos um experimento simples para evidenciar como o cProfile ajuda a loca-
lizar gargalos: comparamos uma multiplicagdo de matrizes feita de forma ingénua em Python
(trés lagos) com a versdo vetorizada do NumPy (delegada a BLAS).

O cédigo abaixo implementa as duas versdes e usa uma funcdo auxiliar para rodar o pro-
filer em cada uma delas, exibindo as fun¢gdes mais custosas. O script pode ser salvo como

profile_matmul.py.

import numpy as np
import math
import cProfile, pstats, io

import time

# Versao ingenua: 3 loops em Python
def matmul_naive (A, B):
n, m = A.shape
m2, p = B.shape
assert m == m2
C = np.zeros((n, p))
for i in range(n):
for j in range(p):
s = 0.0
for k in range(m):
s += A[i, k] * Blk, j]
cli, j1 = s

return C
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0| # Versao NumPy (vetorizada/BLAS)

21| def matmul_numpy (A, B):

2 return A @ B

22| def profile_func(func, *args, top=15):

25 pr = cProfile.Profile()

2 pr.enable ()

27 t0 = time.perf_counter ()

28 result = func(*xargs)

29 tl = time.perf_counter ()

30 pr.disable ()

31 s = 10.S8tringI0()

32 ps = pstats.Stats(pr, stream=s).sort_stats( )
3 ps.print_stats (top)

34 print (f )
35 return s.getvalue ()

36

37/ A = np.random.rand(n, n)

sB = np.random.rand(n, n)

39

10| print ( )

4| out_naive =

ol print (out_naive)

ulprint (
slout_np =
6| print (out_np)

profile_func (matmul _numpy, A,

profile_func (matmul_naive, A, B)

)
B)
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Esse script pode ser executado normalmente com python profile_matmul.py. Outra forma é

rodar o profiler diretamente no terminal, usando python -m cProfile -o saida.prof profile_matmul.py.

Nesse caso o resultado fica salvo em saida.prof, e podemos explord-lo depois com o mo-

dulo pstats de forma interativa, usando comandos como sort cumtime, stats 20 ou callers

matmul _naive

Rodando a versdo ingénua, a saida tipica mostra que praticamente todo o tempo foi consu-

mido dentro de matmul_naive:

3 Ordered by: cumulative time

4 ncalls tottime percall cumtime

5 1 8.523 8.523 8.523
matmul _naive)

6 1 0.009 0.009 0.009
print}

7 function calls in 8.532 seconds

percall filename:lineno (function)
8.523 profile_matmul .py:11(

0.009 {built-in method builtins.

Ao comparar com a versdo vetorizada, vemos que a execugdo termina em milésimos de se-

gundo, com o tempo todo acumulado em matmul_numpy:
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7 function calls in 0.020 seconds

Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.019 0.019 0.019 0.019 profile_matmul.py:28(

matmul _numpy)

Os ntmeros exatos variam conforme o tamanho das matrizes e a biblioteca BLAS instalada,
mas o padrdo é claro: a implementacdo ingénua em Python puro consome segundos de CPU,
enquanto a versao NumPy é milhares de vezes mais rdpida.

As colunas do profiler tém significados diferentes. O campo ncalls mostra o ndmero de
chamadas a fungdo. O tottime corresponde ao tempo gasto apenas dentro da fungdo, sem contar
chamadas internas. Ja o cumtime indica o tempo acumulado incluindo fun¢des chamadas dentro
dela. Em geral, ordenar por cumtime ajuda a encontrar o caminho mais custoso da execugéo,
enquanto olhar para tottime revela fun¢des “folha” particularmente lentas.

Quando esse mesmo codigo é rodado em um notebook Jupyter, o output tende a ficar mais
“poluido”, aparecendo referéncias a asyncio, zmq e outros componentes do kernel. Isso acontece
porque o profiler mede tudo o que roda no processo, ndo apenas a nossa fungao. Para uma visdo
limpa e didética, vale a pena executar o script direto no terminal.

10.2 Paralelizacdo com joblib.Parallel

A biblioteca joblib fornece uma forma simples de paralelizar loops embaragosamente paralelos em
Python, isto €, situagdes em que vdrias tarefas independentes podem ser executadas ao mesmo
tempo. A ideia bésica é escrever um lago for como uma compreensdo preguicosa de chamadas a
uma funcdo via delayed, e despachar essas tarefas para Parallel, que se encarrega de distribui-
las entre diferentes trabalhadores.

from joblib import Parallel, delayed

from math import sqrt

# aplicar sqrt a 072, 172, ..., 972 em paralelo

slres = Parallel(n_jobs=4)(

delayed (sqrt) (i**2)

for i in range (10)

Receita de bolo

No exemplo acima, o parametro n_jobs define quantos trabalhadores serdo usados (tipica-
mente o nimero de CPUs légicas da maquina). A fun¢do delayed apenas empacota a chamada
para que ela possa ser enviada a um worker, enquanto Parallel recolhe todas as tarefas e coor-
dena sua execugdo.

Uma forma intuitiva de entender esse mecanismo é pensar em uma cozinha: se temos apenas

um cozinheiro (um for sequencial), cada prato é preparado do inicio ao fim antes do préximo
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comecar. Ja com varios cozinheiros (workers), cada um recebe um prato e trabalha nele indepen-
dentemente, de modo que varios ficam prontos ao mesmo tempo. Essa estratégia funciona muito
bem, mas hé alguns cuidados: se uma tarefa demora muito enquanto outras sdo rdpidas, pode
haver desequilibrio entre os workers; por outro lado, se existem milhares de tarefas mintsculas, o
custo de despachéa-las pode ser maior que o ganho da paralelizagdo. Para reduzir esse problema,
0 joblib agrupa chamadas em lotes (batching), enviando vdrias de uma vez s6.

Outro detalhe importante estd no backend usado. Em Python, o Global Interpreter Lock (GIL)
impede que vdrias threads executem c6digo Python puro ao mesmo tempo. Por isso, o backend
padrdo (loky) cria processos separados, que contornam o GIL e escalam bem em célculos pe-
sados. J4 o backend threading mantém as tarefas no mesmo processo, sendo ttil em fungdes
que passam a maior parte do tempo esperando I/O ou que ja liberam o GIL (como operagoes
NumPy). Existe ainda o multiprocessing, mas o loky tende a ser mais robusto.

# Uso de threads porque a funcao processa_io
# passa a maior parte do tempo esperando rede.
res = Parallel(n_jobs=8, backend= ) (

delayed(processa_io) (u) for u in urls

Exemplo com I/O

Em resumo: use loky (padrdo) para tarefas CPU-bound, threading para tarefas I/O-bound, e
sempre ajuste o nimero de jobs de acordo com o hardware disponivel. Paralelizar acelera muito,
mas nem sempre compensa: quando as tarefas sdo pequenas demais, o overhead pode superar o
beneficio.

Um exemplo cléssico de tarefa CPU-bound é calcular nimeros primos ou executar operagdes

pesadas de algebra linear. Nesses casos, vale usar o backend padrao:

from joblib import Parallel, delayed

import math

def eh_primo(n):
for i in range(2, int(math.sqrt(m))+1):
if n % 1 == 0:
return False

return True

nums = range (10**6, 10**6+1000)

res = Parallel(n_jobs=4) (delayed(eh_primo) (n) for n in nums)

Exemplo CPU-bound

Aqui, cada worker testa um conjunto de nimeros independentemente. Quanto mais ntcleos
disponiveis, mais rdpido o processamento.

Ja um exemplo I/O-bound seria baixar varias paginas da web. Cada tarefa fica a maior parte
do tempo esperando a rede, e usar processos separados ndo traz vantagem; nesse caso o backend
threading é mais leve:
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import requests
urls = [ 1 *x 20

def baixa(url):

return requests.get(url).status_code

res = Parallel(n_jobs=8, backend= ) (

delayed(baixa) (u) for u in urls

Exemplo I/O-bound

Se cada requisi¢do demora cerca de 1 segundo, com 8 threads as 20 requisi¢des terminam em
poucos segundos, em vez de mais de 20.

Por fim, um caso em que a paralelizagdo atrapalha é quando as tarefas sdo rapidas demais,
por exemplo calcular o quadrado de ntiimeros pequenos:

def quadrado(n):

return n*n

nums = range (1000)

sires = Parallel(n_jobs=4) (delayed(quadrado) (n) for n in nums)

Exemplo de overhead

Aqui o custo de organizar as tarefas, mandar para os workers e reunir os resultados é maior
do que simplesmente rodar um for sequencial. Nesse cendrio, a paralelizagdo pode ser mais

lenta.

10.3 Compilacao Just-In-Time com Numba

Numba é um compilador JIT (Just-In-Time) para Python focado em acelerar c6digo numérico.
Ele “traduz” fung¢des Python (que operam sobre tipos e arrays compativeis) para cédigo nativo
via LLVM, reduzindo drasticamente o overhead dos lagos em Python puro. A ideia préatica é
simples: decorar fungdes criticas com @njit (ou @jit(nopython=True)), evitar objetos Python
dentro dessas fungdes e, quando fizer sentido, ativar paralelizacdo com parallel=True e prange.

O primeiro cuidado ao medir é lembrar do custo de compilagdo: na primeira chamada de
cada assinatura de tipos, Numba compila a fun¢do (demora mais). Depois disso, as chamadas
seguintes usam o c6digo nativo ja gerado.

O exemplo abaixo acelera uma multiplicagdo de matrizes ingénua (trés lagos) sem recor-
rer ao NumPy @. Primeiro mostramos a versdo njit sequencial; em seguida, a variagdo paralela
(parallel=True + prange). Usamos perf_counter para mostrar o tempo da primeira chamada

(com compilacdo) e das chamadas seguintes (sem compilagao).

import numpy as np

import time

3l from numba import njit, prange
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# Versao Python pura (referencia)

ul

¢/ def matmul_naive (A, B):
7 n, m = A.shape

8 m2, p = B.shape

9 assert m == m2

10 C = np.zeros((n, p))

11 for i in range(n):

12 for j in range(p):

13 s = 0.0

14 for k in range(m):

15 s += A[i, k] * B[k, jI

16 cli,

17 return C

jl = s

19| # Versao Numba: nopython mode (sem objetos Python dentro)

20/ @njit

21| def matmul_numba (A, B):

22 n, m = A.shape

23 m2, p = B.shape

2 C = np.zeros((n, p))

25 for i in range(n):

26 for j in range(p):

27 s = 0.0

28 for k in range(m):
2 s += A[i, k] * B[k, j]
30 Cli, jl = s

31 return C

33| # Versao Numba paralela: requer parallel=True e uso de prange
4 @njit (parallel=True)

55 def matmul_numba_parallel (A, B):

36 n, m = A.shape

37 m2, p = B.shape

38 C = np.zeros ((n, p))

39 for i in prange(n): # <-- prange permite paralelizar esse loop
externo

40 for j in range(p):

41 s = 0.0

0 for k in range(m):

s s += A[i, k] * B[k, j]

44 Cli, jl = s

45 return C

46

47| # Benchmark simples: separa "primeira chamada" e "repetidas"

| def bench(func, *args, repeat=3, label=""):

# primeira chamada
t0 =

(inclui compilacao JIT quando aplicavel)

time.perf_counter ()
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out = func(xargs)
tl = time.perf_counter ()
print (f )

# chamadas seguintes (ja compilado)

best = float( )
for _ in range(repeat):
t0 = time.perf_counter ()

func (xargs)

tl = time.perf_counter ()
best = min(best, t1 - tO0)
print (f )

return out

5)if __name__ ==
n = 600
A = np.random.rand(n, n)
B = np.random.rand(n, n)

# Referencia Python puro (lento)

bench (matmul_naive, A, B, label= )

# Numba sequencial
bench (matmul _numba, A, B, label= )

# Numba paralelo
bench (matmul _numba_parallel, A, B, label= )

Acelerando loops com Numba (@nyjit)

Na prética, vocé deverd observar algo assim: a versdo Python pura leva segundos; a versdao
@njit cai para fragdes (ou poucos segundos em matrizes grandes) apds a compilagdo; a ver-
sdo paralela tende a ganhar mais em mdaquinas com vérios nicleos, desde que o tamanho do
problema justifique o overhead de criar e sincronizar threads. Nem todo lago se beneficia de
parallel=True; se o problema é pequeno, o custo extra pode superar o ganho.

Outro modo ttil de Numba é compilar fung¢des elementwise com @vectorize, criando uma
ufunc ao estilo NumPy; isso permite aplicar a fun¢do diretamente sobre arrays, com broadcast,
sem escrever lagos em Python. O exemplo a seguir define uma ufunc para uma transformagao

escalar simples e a aplica a um array grande.

import numpy as np

from numba import vectorize, float64

@vectorize ([float64(float64)])

def transform(x):
# alguma transformacao escalar (exemplo)
return (x * x + 0.5) / (x + 1.0)
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9] X

0|y

np.random.rand (1_000_000)

transform(x) # aplica como ufunc, sem lacos explicitos em Python

UFunc com @vectorize (estilo NumPy)

Algumas recomendagdes préticas ao usar Numba: (i) mantenha dentro das fungdes JIT apenas
operagdes suportadas (aritmética, indexagdo NumPy, algumas fungdes math/numpy); (ii) evite
objetos Python (listas que crescem, diciondrios, set) e chamadas que exijam o interpretador; (iii)
prefira arrays com dtype numéricos (float64, int64, etc.) e formatos contiguos; (iv) tome cuidado
com alocagdo excessiva dentro do lago; (v) ative parallel=True apenas apds confirmar que o
gargalo é CPU-bound e que o tamanho do problema compensa a paralelizacao; (vi) lembre-se
do “aquecimento”: mega separando a primeira chamada (com compilagdo) das seguintes; (vii)
quando a fungdo estabilizar, @njit (cache=True) pode salvar o bindrio no disco e reduzir o tempo
de compilacdo em execugdes futuras (atil em scripts).

Por fim, se vocé ja tem uma versdo vetorizada eficiente em NumPy (que usa BLAS), muitas
vezes ela serd tdo rdpida quanto (ou mais rdpida que) reimplementar em Numba, a menos que
o seu padrdo de acesso/célculo seja muito especifico. O ponto forte do Numba é acelerar lagos
e loégicas numéricas que seriam lentas em Python puro, mantendo o cédigo préximo ao original,

sem partir direto para C/C++.

10.4 Paralelismo simples em Bash

O Bash permite escrever pequenos scripts para automatizar tarefas repetitivas. Um dos recursos
mais uteis é a possibilidade de rodar varios comandos em paralelo, sem esperar um terminar
para comecar o proximo. Para isso usamos o operador &.

No exemplo abaixo, usamos o comando sleep (que apenas dorme por alguns segundos) para
simular tarefas demoradas. Cada chamada ao sleep é enviada ao plano de fundo com &, de
modo que o laco continua imediatamente para a proxima iteracao.

#!/bin/bash

N

s)for i in $(seq 1 5)
4| do

echo

6 sleep 3 &

7| done

9] echo

Rodando sleeps em paralelo

Nesse script, as cinco tarefas comecam quase a0 mesmo tempo e, apos cerca de tres segundos,
todas terminam juntas. Se tirassemos o &, o script levaria cerca de 15 segundos, pois cada sleep
3 seria executado em sequencia.

Para visualizar essa diferenca, vejamos primeiro a execucao sequencial:

i|#!/bin/bash
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for i in $(seq 1 5)
do

echo

sleep 3

done

echo

Execucao sequencial

E agora a versao em paralelo, onde o tempo total cai para cerca de 3 segundos:

#!/bin/bash

for i in $(seq 1 5)
do

echo

sleep 3 &

done

wait

echo

Execucao em paralelo

Para garantir que o script so finalize depois que todas as tarefas concluirem, podemos usar

explicitamente o comando wait:

#!'/bin/bash

for i in $(seq 1 5)
do

sleep 3 &
done

wait

echo

Sincronizando com wait

Tambem é possivel limitar quantas tarefas rodam em paralelo. Uma tecnica simples é contro-
lar com um contador e usar wait -n para esperar pelo menos um job terminar antes de lancar o

proximo:

#!/bin/bash

N=2 # no maximo 2 processos ao mesmo tempo

for i in $(seq 1 5)
do
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sleep 3 &

if (( $(jobs -r wc -1) >= N )); then
wait -n

fi

done

3l wait

echo

Limitando jobs simultaneos

Esses exemplos usam apenas comandos nativos (sleep, echo), mas a ideia é exatamente a

mesma se quisermos chamar um script Python ou outro programa no lugar.
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