
Aprendizado de máquinas

Thiago Rodrigo Ramos

6 de fevereiro de 2026

2

Sumário

1 Introdução 7
1.1 Um breve histórico do aprendizado estatístico . 7

1.1.1 Inferência vs Predição . 8
1.1.2 As duas culturas de Breiman . 9

1.2 Algumas tarefas clássicas de aprendizado . 10
1.3 Exemplos . 10

1.3.1 Salários . 10
1.3.2 Mercado de ações . 11

1.4 Um conselho: a importância de ser ruim antes de ser bom 12

2 Fundamentos do aprendizado supervisionado 13
2.1 Formulação do problema . 13
2.2 Decomposição de viés-variância em regressão . 15
2.3 Data Splitting e Validação Cruzada . 18

3 Introdução à regressão via mínimos quadrados 21
3.1 Mínimos quadrados . 21
3.2 Resolução Numérica . 25
3.3 Estimativas de erros para regressão linear . 25
3.4 Um pouco de inferência . 27

4 Introdução à classificação via regressão logística 29
4.1 Classificador de Bayes . 29

4.1.1 O Modelo Logístico . 31
4.1.2 Estimando os Coeficientes da Regressão . 32

4.2 Um pouco de otimização - O método de Newton . 33
4.3 Outras métricas de avaliação . 35
4.4 Ajuste do limiar de decisão . 36

4.4.1 Escolhendo o limiar de decisão . 37

5 KNN 41
5.1 KNN para classificação . 41
5.2 KNN para regressão . 44
5.3 O que é treinado no KNN? . 44

3

4 SUMÁRIO

5.4 Regressão Linear vs. KNN . 45

6 Modelos baseados em árvores 49

6.1 Árvores de decisão . 49

6.1.1 Divisão Binária Recursiva . 50

6.1.2 Poda de Árvores (Tree Pruning) . 52

6.1.3 Árvores de Classificação . 53

6.1.4 Árvores versus modelos lineares . 56

6.1.5 Vantagens e Desvantagens das Árvores . 58

6.2 Bagging . 58

6.2.1 Estimativa do Erro Out-of-Bag (OOB) . 59

6.2.2 Importância de Variáveis em Modelos Bagged 61

6.3 Random Forests . 61

6.3.1 Impacto dos Parâmetros B e m . 62

6.3.2 Uso de Random Forests em Altas Dimensões 63

7 Seleção de modelos lineares e regularização 65

7.1 Seleção do melhor subconjunto (Best Subset Selection) 66

7.1.1 Seleção Foward e Backward . 67

7.2 Ridge e Lasso . 72

7.2.1 Regressão Ridge (Ridge Regression) . 72

7.2.2 Regressão Lasso . 73

7.2.3 Formulações Alternativas de Ridge e Lasso 73

7.2.4 Interpretação via encolhimento . 75

7.2.5 Interpretação Bayesiana de Ridge e Lasso . 76

8 Boosting 79

8.1 AdaBoost . 79

8.1.1 Cálculo do erro empírico . 82

8.1.2 Um pouco de teoria . 84

8.2 Gradient Boosting . 86

9 SVM 89

9.1 Caso separável . 90

9.1.1 Problema primal . 90

9.1.2 Um pouco de otimização convexa . 92

9.1.3 Vetores de suporte . 92

9.1.4 Um breve comentário sobre dualidade . 93

9.1.5 Problema dual . 94

9.2 Caso não separável . 95

9.3 O truque do kernel . 96

9.3.1 Formulações primal e dual com kernel . 97

SUMÁRIO 5

10 Redução de dimensão 99
10.1 Análise de componentes principais . 99

10.1.1 Variância explicada . 101
10.1.2 Decomposição em valores singulares . 102
10.1.3 Aplicação: redução de dimensão . 106
10.1.4 Aplicação: compressão de dados . 107

10.2 Projeções aleatórias . 108
10.2.1 Aplicação . 109

10.3 t-SNE . 110
10.3.1 Aplicação 1 . 111

11 K-Médias 113

12 Predição conforme 117
12.1 O método split conformal . 117
12.2 Conformalized Quantile Regression . 118
12.3 Partição local via árvore de decisão . 119

A Revisão 121
A.1 Álgebra linear . 121

A.1.1 Multiplicações . 123
A.1.2 Mudança de base . 124
A.1.3 Produtos internos . 125
A.1.4 Ortogonalidade . 128

A.2 Probabilidade . 133
A.2.1 Variáveis aleatórias . 133
A.2.2 Probabilidade condicional e independência . 134
A.2.3 Algumas fórmulas importantes . 134
A.2.4 Esperança e desigualdade de Markov . 135
A.2.5 Variância e a desigualdade de Chebyshev . 135
A.2.6 Covariância . 136
A.2.7 Teoremas assintóticos . 137
A.2.8 Função geradora de momentos . 138

B Guia de desigualdades 139

C Ferramentas computacionais 141
C.1 Git . 141
C.2 Python . 142
C.3 Poetry . 142

6 SUMÁRIO

Material do curso

Todo o material utilizado neste curso, incluindo códigos e notebooks, pode ser acessado no
repositório do GitHub: https://github.com/thiagorr162/curso_aprendizado.

Referências principais

O conteúdo deste curso é baseado em referências que cobrem tópicos fundamentais de aprendi-
zado de máquina e estatística. Izbicki and dos Santos (2020) introduz o aprendizado de máquina
com ênfase em uma abordagem estatística, voltada ao público brasileiro. James et al. (2013) apre-
sentam métodos estatísticos aplicados à aprendizagem supervisionada e não supervisionada,
com exemplos em R e Python. Hastie et al. (2001) abordam técnicas avançadas e a teoria estatís-
tica por trás de algoritmos de aprendizado de máquina. Shalev-Shwartz and Ben-David (2014)
desenvolvem a teoria do aprendizado e a análise de algoritmos, com foco na compreensão ma-
temática das técnicas. Mohri et al. (2018) tratam de conceitos fundamentais de generalização e
estabilidade, além de fornecer uma base teórica para diversos algoritmos modernos.

Todas esses livros podem ser baixadas online de forma legal nos sites dos autores.

https://github.com/thiagorr162/curso_aprendizado

Capítulo 1

Introdução

Aprendizado de máquina é um termo utilizado para descrever sistemas capazes de identificar au-
tomaticamente padrões e regularidades em dados (Shalev-Shwartz and Ben-David, 2014). Nos
últimos anos, essa área consolidou-se como uma ferramenta indispensável para atividades que
envolvem a análise e interpretação de grandes volumes de informação. Hoje em dia, essa tecno-
logia está presente em nosso cotidiano: motores de busca ajustam seus resultados para atender
melhor às nossas consultas (ao mesmo tempo em que exibem anúncios), filtros de spam são aper-
feiçoados para proteger nossas caixas de e-mail, e sistemas de detecção de fraudes asseguram
a integridade de transações financeiras realizadas com cartões de crédito. Além disso, câmeras
digitais reconhecem rostos, assistentes virtuais em smartphones interpretam comandos de voz e
veículos utilizam algoritmos inteligentes para prevenir acidentes. O aprendizado de máquina
também desempenha papel crucial em diversas áreas da ciência, como a bioinformática, a medi-
cina e a astronomia.

1.1 Um breve histórico do aprendizado estatístico

Como descrito em James et al. (2013), embora o termo aprendizado estatístico seja relativamente
recente, muitos dos conceitos fundamentais da área foram estabelecidos há bastante tempo. No
início do século XIX, surgiu o método dos mínimos quadrados, que representa uma das primeiras
formas do que hoje conhecemos como regressão linear. Essa técnica foi aplicada com sucesso,
inicialmente, em problemas de astronomia. A regressão linear é amplamente utilizada para
prever variáveis quantitativas, como o salário de um indivíduo, por exemplo.

Com o objetivo de prever variáveis qualitativas — como determinar se um paciente sobrevi-
verá ou não, ou se o mercado financeiro terá alta ou queda —, foi proposta em 1936 a análise
discriminante linear. Já na década de 1940, autores sugeriram uma abordagem alternativa: a
regressão logística. No início dos anos 1970, o conceito de modelos lineares generalizados foi intro-
duzido, englobando tanto a regressão linear quanto a logística como casos particulares dentro de
uma estrutura mais ampla.

Até o final da década de 1970, diversas técnicas para aprendizado a partir de dados já estavam
disponíveis, embora fossem predominantemente lineares, devido às limitações computacionais
da época para modelagem de relações não lineares. A partir dos anos 1980, com o avanço da

7

8 CAPÍTULO 1. INTRODUÇÃO

tecnologia, métodos não lineares passaram a ser mais acessíveis. Nesse período surgiram as
árvores de decisão para classificação e regressão, seguidas pelos modelos aditivos generalizados.
Ainda nos anos 1980, as redes neurais ganharam destaque, e nos anos 1990, as máquinas de vetor
de suporte (support vector machines) foram introduzidas.

Desde então, o aprendizado estatístico consolidou-se como um subcampo da estatística dedi-
cado à modelagem e predição em cenários supervisionados e não supervisionados. Nos últimos
anos, o progresso na área foi impulsionado pela crescente disponibilidade de softwares podero-
sos e acessíveis, como a linguagem de programação Python, que é gratuito e de código aberto.
Esse avanço vem contribuindo para ampliar o alcance das técnicas de aprendizado estatístico,
tornando-as uma ferramenta essencial não apenas para estatísticos e cientistas da computação,
mas também para profissionais de diversas outras áreas.

1.1.1 Inferência vs Predição

Como descrito em Izbicki and dos Santos (2020), em problemas supervisionados, é importante
distinguir entre dois objetivos fundamentais: a inferência e a predição. Essas duas abordagens
guiam a forma como modelos são construídos e avaliados.

• Objetivo inferencial diz respeito à compreensão da relação entre as covariáveis x e a va-
riável resposta Y. Nesse caso, queremos responder perguntas como: quais covariáveis são
mais relevantes para explicar Y? Qual a direção e a magnitude do efeito de cada preditor?
Esse tipo de análise é útil quando o interesse está em interpretar o modelo, entender a
estrutura dos dados ou formular hipóteses científicas.

• Objetivo preditivo, por outro lado, está focado em construir uma função g : Rd → R que
tenha boa capacidade de prever Y para novas observações não vistas durante o treinamento.
O sucesso neste contexto é medido pela capacidade do modelo em generalizar para dados
futuros, mesmo que isso ocorra às custas de uma menor interpretabilidade do modelo.

Para ilustrar essas distinções, vejamos dois exemplos práticos:

• No Exemplo 1.3 (Isomap face data), cada observação consiste em uma imagem de um rosto
humano, e o objetivo é prever a direção para a qual a pessoa está olhando (variável y) com
base nos pixels da imagem (variáveis x). Esse é um exemplo puramente preditivo, pois a
principal meta é estimar corretamente a direção do olhar em novas imagens. O modelo não
busca explicar quais regiões da imagem são mais relevantes ou como cada pixel individual
influencia a resposta, mas sim gerar boas predições.

• Já no Exemplo 1.4 (Million Song Dataset), o banco de dados contém informações sobre
diversas características de músicas (como timbre, energia, dançabilidade etc.) e o ano de
lançamento de cada uma delas. Nesse caso, o problema tem um caráter misto. Por um
lado, queremos prever o ano de lançamento a partir das covariáveis disponíveis (objetivo
preditivo). Por outro, pode haver interesse em entender como cada característica da música
se relaciona com o ano de lançamento, como por exemplo investigar se músicas dos anos
70 são de fato mais "dançantes"do que as atuais (objetivo inferencial).

1.1. UM BREVE HISTÓRICO DO APRENDIZADO ESTATÍSTICO 9

Portanto, enquanto alguns problemas são essencialmente preditivos ou inferenciais, outros
envolvem uma combinação dos dois. Essa distinção é relevante, pois impacta tanto a escolha do
modelo quanto a forma de interpretá-lo e validá-lo.

1.1.2 As duas culturas de Breiman

Leo Breiman foi um estatístico renomado, conhecido por suas contribuições fundamentais à
estatística e ao aprendizado de máquina, incluindo o desenvolvimento de métodos como random
forests Breiman (2001a). Em seu influente artigo "Statistical Modeling: The Two Cultures" (Breiman,
2001b), Breiman discute duas abordagens distintas para modelagem estatística. Ele inicia seu
artigo com o seguinte resumo:

“There are two cultures in the use of statistical modeling to reach conclusions from data.
One assumes that the data are generated by a given stochastic data model. The other uses
algorithmic models and treats the data mechanism as unknown. The statistical community
has been committed to the almost exclusive use of data models. This commitment has led to
irrelevant theory, questionable conclusions, and has kept statisticians from working on a large
range of interesting current problems. Algorithmic modeling, both in theory and practice, has
developed rapidly in fields outside statistics. It can be used both on large complex data sets
and as a more accurate and informative alternative to data modeling on smaller data sets. If
our goal as a field is to use data to solve problems, then we need to move away from exclusive
dependence on data models and adopt a more diverse set of tools.”

O artigo teve grande impacto na comunidade estatística e no campo do aprendizado de má-
quina. Nele, Breiman argumenta que existem duas culturas distintas na modelagem de dados:
a cultura dos modelos estocásticos, que assume que os dados são gerados por um modelo pro-
babilístico especificado (como regressão linear, modelos lineares generalizados etc.), e a cultura
algorítmica, que foca na construção de algoritmos preditivos eficazes sem necessariamente se
preocupar com a interpretação ou com a modelagem explícita da distribuição dos dados (como
árvores de decisão, random forests, redes neurais, entre outros).

Breiman defende que a estatística tradicional estava excessivamente focada em modelos esto-
cásticos, o que limitava seu impacto em problemas práticos, enquanto métodos algorítmicos —
amplamente utilizados fora da estatística, especialmente na ciência da computação — estavam
mais bem adaptados para resolver problemas com grandes volumes de dados e alta complexi-
dade.

Hoje em dia, o artigo de Breiman é amplamente citado e considerado um marco que antecipou
a ascensão de métodos de aprendizado de máquina dentro da estatística e da ciência de dados.
No entanto, sua visão também recebeu críticas. Alguns argumentam que as duas culturas não
são mutuamente excludentes e que há um valor significativo na modelagem estatística clássica,
especialmente quando a interpretação dos parâmetros e a inferência causal são importantes.
Além disso, com o avanço dos métodos de aprendizado estatístico e da estatística bayesiana,
muitos pesquisadores propõem abordagens híbridas que combinam modelagem interpretável
com o poder preditivo dos algoritmos.

10 CAPÍTULO 1. INTRODUÇÃO

Atualmente, o artigo de Breiman é visto como uma provocação importante que incentivou
a comunidade a repensar o papel da estatística em problemas do mundo real, mas também é
reconhecido que tanto a modelagem estocástica quanto a preditiva têm seu espaço e relevância
dependendo do contexto e dos objetivos da análise.

1.2 Algumas tarefas clássicas de aprendizado

A seguir, apresentamos algumas tarefas clássicas de aprendizado de máquina que têm sido am-
plamente estudadas (Mohri et al., 2018):

• Classificação: consiste em atribuir uma categoria a cada item. Por exemplo, na classificação
de documentos, o objetivo é rotular cada texto com categorias como política, negócios,
esportes ou clima. Já na classificação de imagens, cada imagem pode ser categorizada como
carro, trem ou avião. Em geral, o número de categorias é limitado a algumas centenas, mas
pode ser consideravelmente maior em tarefas complexas, como reconhecimento óptico de
caracteres (OCR), classificação de textos ou reconhecimento de fala.

• Regressão: envolve a predição de um valor numérico contínuo para cada item. Exemplos
comuns incluem a previsão de preços de ações ou de indicadores econômicos. Diferente-
mente da classificação, em regressão o erro de uma predição depende da distância entre o
valor real e o valor estimado, enquanto na classificação normalmente não há uma medida
de proximidade entre as categorias.

• Ranqueamento: trata-se de aprender a ordenar itens de acordo com algum critério. Um
exemplo típico é o ranqueamento de páginas em um motor de busca, onde o sistema
precisa retornar os resultados mais relevantes para uma consulta. Outras aplicações de
ranqueamento aparecem em sistemas de extração de informações e em processamento de
linguagem natural.

• Agrupamento (Clustering): busca organizar um conjunto de itens em subconjuntos homo-
gêneos. Algoritmos de agrupamento são especialmente úteis na análise de grandes volumes
de dados. Na análise de redes sociais, por exemplo, técnicas de clustering são usadas para
identificar comunidades ou grupos com características similares dentro de uma rede.

• Redução de dimensionalidade ou aprendizado de variedades: refere-se ao processo de
transformar uma representação original de dados em uma representação de menor dimen-
são, preservando certas propriedades estruturais importantes. Um exemplo comum ocorre
no pré-processamento de imagens digitais em tarefas de visão computacional.

1.3 Exemplos

1.3.1 Salários

Nesta análise, utilizamos um conjunto de dados que contém informações sobre salários de traba-
lhadores da região do Atlântico dos Estados Unidos (Fig. 1.3.1). O foco é explorar como fatores

1.3. EXEMPLOS 11

como idade, nível de escolaridade e o ano em que o salário foi registrado influenciam os valores
salariais.

Figura 1.1: Exemplo de registros do conjunto de dados de salários.

Exercício 1. Utilizando o código nesse link. Faça uma análise do comportamento entre as variáveis de
idade e salário. Faça o mesmo para nível de escolaridade e salário.

1.3.2 Mercado de ações

Enquanto o conjunto de dados de salários aborda a previsão de uma variável numérica contínua,
neste exemplo o objetivo é prever um resultado qualitativo. Trata-se de um problema clássico de
classificação, em que desejamos prever categorias ao invés de valores numéricos. Um exemplo

Figura 1.2: Exemplo de registros do conjunto de dados de ações.

interessante envolve dados do mercado financeiro (Fig. 1.2), que incluem as variações diárias
do índice S&P 500 ao longo de um período de cinco anos, entre 2001 e 2005. Esse conjunto de
dados, que chamaremos de Smarket, busca prever a direção do mercado em um determinado dia
(se irá subir ou cair), utilizando como variáveis explicativas as mudanças percentuais dos cinco
dias anteriores.

Diferente da tarefa de regressão, aqui o desafio consiste em classificar o movimento do mer-
cado como sendo uma alta (Up) ou uma baixa (Down). Embora o comportamento passado do
índice possa não fornecer uma regra clara para prever o movimento do dia seguinte, pequenas
tendências ou padrões podem ser identificados com métodos de aprendizado estatístico.

Exercício 2. Explorar os dados do mercado de ações utilizando esse código.

https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/introducao/wage.ipynb
https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/introducao/stock.ipynb

12 CAPÍTULO 1. INTRODUÇÃO

1.4 Um conselho: a importância de ser ruim antes de ser bom

É natural que, quando começamos a fazer algo, a gente faça essa coisa muito malfeita ou cheia
de defeitos. Isso é comum em qualquer processo de aprendizagem, e sempre foi assim, desde o
início dos tempos.

Quando comecei a programar em Python, muita coisa sobre a linguagem eu aprendi por
conta própria, apesar de já ter feito alguns cursos básicos em C. Programei de forma amadora
em Python por muitos anos, até que, no doutorado, precisei aprender a programar de forma mais
organizada e profissional. Lembro que, nessa época, um amigo da pós-graduação me apresentou
ao "submundo da programação". Foi aí que aprendi muito do que sei hoje sobre terminal do
Linux, Git, e foi também quando comecei a usar o Vim.

Uma das coisas que esse amigo me mostrou foi o Pylint, que nada mais é do que um verifi-
cador de bugs e qualidade de código para Python. O Pylint é bem rigoroso na análise, e ainda
te dá, ao final, uma nota que vai até 10. Nessa fase, apesar de já ter evoluído bastante, meus
códigos ainda recebiam notas por volta de 6 ou 7. Resolvi então rodar o Pylint nos meus códigos
antigos pra ter uma noção de quão ruins eles eram — e a nota final foi -900. Pois é, existe um
limite superior para o quão bem você consegue fazer algo, mas aparentemente o fundo do poço
é infinito.

O que eu queria mostrar com essa história é que faz parte do processo de aprendizado ser
ruim no começo e melhorar com o tempo. Falo isso porque, hoje em dia, com o crescimento
dos LLMs, a gente fica tentado a pular essa etapa de errar muito até acertar, e ir direto pra
fase em que escrevemos códigos limpos, bem comentados, identados e organizados. Mas não
se enganem: apesar da aparência profissional, depender de LLMs pra escrever tudo atrapalha
justamente essa parte essencial de aprender errando.

Nessas notas, vários exercícios envolvem escrever códigos em Python. Meu conselho é: não
tenham vergonha de errar, de escrever soluções ruins ou confusas. Isso é absolutamente normal.
Vocês estão aqui para evoluir — e errar faz parte do processo.

Capítulo 2

Fundamentos do aprendizado
supervisionado

O aprendizado supervisionado é uma das principais áreas do aprendizado de máquina e da
estatística, tendo como objetivo construir modelos capazes de prever uma variável de interesse
Y a partir de um conjunto de variáveis explicativas X. Este paradigma baseia-se em dados
rotulados, ou seja, em observações para as quais tanto as covariáveis quanto a variável de resposta
são conhecidas.

2.1 Formulação do problema

Ao longo deste capítulo, assumiremos que dispomos de uma amostra de dados (Xi, Yi)
n
i=1, em

que cada par (Xi, Yi) é uma realização de um mesmo par de variáveis aleatórias (X, Y). Além
disso, adotaremos a hipótese de que estas observações são i.i.d. (independentes e identicamente
distribuídas). Esta suposição simplifica a análise teórica, permitindo o uso de ferramentas como
leis dos grandes números e teoremas de concentração. Na prática, embora a hipótese de i.i.d.
nem sempre seja completamente satisfeita, ela é uma aproximação útil e bastante comum em
aplicações reais.

Nosso objetivo será utilizar esse conjunto de dados (ou uma parte dele) para aprender um
modelo preditivo, que denotaremos por ĝ, de forma que ĝ(X) ≈ Y. O significado da relação de
aproximação "≈"será discutido a seguir.

Ao construir um modelo preditivo ĝ(X) para estimar uma variável de interesse Y, é essencial
definir uma métrica que quantifique o erro cometido pelas previsões. Essa métrica é chamada
de função de perda, e mede a discrepância entre o valor verdadeiro Y e a predição ĝ(X). Duas
escolhas comuns para problemas com resposta contínua (regressão) são:

L(Y, ĝ(X)) =

(Y− ĝ(X))2 (erro quadrático)

|Y− ĝ(X)| (erro absoluto).

No caso de problemas com resposta discreta (classificação), um exemplo comum de função de
perda é a chamada perda 0-1, definida por:

L(Y, ĝ(X)) = I {g(X) ̸= Y} ,

13

14 CAPÍTULO 2. FUNDAMENTOS DO APRENDIZADO SUPERVISIONADO

a qual simplesmente contabiliza a quantidade de erros cometidos pelo classificador ĝ, isto é, o
número de vezes em que a predição difere do valor verdadeiro.

A escolha da função de perda impacta diretamente as propriedades do modelo e como ele
responde a diferentes tipos de dados ou outliers.

Erro de teste, também chamado de erro de generalização, é o erro de predição em uma amostra
de teste independente:

RD(ĝ) = E [L(Y, ĝ(X)) | D]

onde X e Y são sorteados de sua distribuição conjunta (população). Note que ĝ depende de D!
Aqui, o conjunto de treinamento D é fixo, e o erro de teste se refere ao erro para esse conjunto
de treinamento específico. Uma quantidade relacionada é o erro esperado de predição (ou erro
esperado de teste):

R(ĝ) = E [L(Y, ĝ(X))] = E [ErrD] .

Note que a esperança acima leva em conta toda a aleatoriedade envolvida, incluindo a aleatorie-
dade do conjunto de treinamento que gerou ĝ.

Nosso objetivo será a estimação de ErrD, embora veremos que Err é mais acessível do ponto
de vista estatístico, e a maioria dos métodos busca estimar efetivamente esse erro esperado.
Estimar ErrD de maneira condicional não é muito viável na prática.

Erro de treinamento é a perda média sobre a amostra de treinamento:

R̂(ĝ) =
1
N

N

∑
i=1

L(yi, ĝ(xi)).

Nosso interesse está em conhecer o erro de teste esperado do modelo ĝ. À medida que
o modelo se torna mais complexo, ele se ajusta melhor aos dados de treinamento e passa a
capturar estruturas subjacentes mais complicadas. Com isso, ocorre uma redução no viés, mas
um aumento na variância. Existe, portanto, um nível intermediário de complexidade do modelo
que minimiza o erro esperado de teste.

Infelizmente, o erro de treinamento não é uma boa estimativa do erro de teste. O erro de
treinamento tipicamente diminui à medida que a complexidade do modelo aumenta, podendo
até atingir zero quando essa complexidade é suficientemente alta. Entretanto, um modelo com
erro de treinamento igual a zero está superajustado (overfit) aos dados de treinamento e, geral-
mente, apresentará baixa capacidade de generalização.

Ao longo deste capítulo, descreveremos diversos métodos para estimar o erro de teste espe-
rado de um modelo. Tipicamente, o modelo dependerá de um parâmetro ou de um conjunto de
parâmetros de ajuste α, de modo que podemos escrever a predição como ĝα(x). O parâmetro
α controla a complexidade do modelo, e nosso objetivo é encontrar o valor de α que minimize
o erro esperado de teste, ou seja, que produza o menor erro médio. Para simplificar a notação,
omitiremos frequentemente a dependência explícita de ĝ(x) em α.

É importante destacar que temos, na verdade, dois objetivos distintos ao avaliar modelos
preditivos:

• Seleção de modelo: consiste em comparar diferentes modelos ou configurações a fim de
escolher o que apresenta o melhor desempenho.

2.2. DECOMPOSIÇÃO DE VIÉS-VARIÂNCIA EM REGRESSÃO 15

Figura 2.1: Exemplo de sobreajuste. Imagem retirada de (Izbicki and dos Santos, 2020).

• Avaliação de modelo: uma vez escolhido o modelo final, o objetivo passa a ser estimar o
seu erro de predição (ou erro de generalização) em novos dados.

Para entender como o erro de predição se comporta em função da complexidade do modelo,
começamos analisando o caso da regressão, onde é possível decompor o erro de teste esperado
em termos de viés e variância. Essa decomposição fornece intuições valiosas sobre o compromisso
entre subajuste e sobreajuste, e servirá de base conceitual para as discussões posteriores sobre
classificação e seleção de modelos.

2.2 Decomposição de viés-variância em regressão

As origens dos métodos de regressão remontam a mais de 200 anos, com as contribuições de Le-
gendre (1805) e Gauss (1809), que introduziram o método dos mínimos quadrados para modelar
o movimento dos planetas ao redor do Sol. Atualmente, a estimação de funções de regressão é
um dos pilares fundamentais da estatística.

Embora as primeiras soluções para este problema sejam antigas, apenas nas últimas décadas,
com o avanço das tecnologias de computação e armazenamento, novas abordagens puderam ser
exploradas. Em especial, o crescimento exponencial da quantidade de dados disponíveis tem im-
pulsionado o desenvolvimento de métodos que fazem menos suposições sobre o comportamento
real dos fenômenos estudados.

Esse cenário trouxe novos desafios: por exemplo, métodos clássicos muitas vezes não conse-
guem lidar adequadamente com bancos de dados em que o número de variáveis excede o número
de observações, uma situação comum nos contextos atuais. Além disso, aplicações envolvendo
dados complexos — como imagens ou textos — têm se tornado frequentes e demandam técnicas
mais sofisticadas.

De modo geral, o objetivo de um modelo de regressão é capturar a relação entre uma variável
aleatória de interesse Y ∈ R e um vetor de covariáveis x = (x1, . . . , xp) ∈ Rp. O foco está em

16 CAPÍTULO 2. FUNDAMENTOS DO APRENDIZADO SUPERVISIONADO

estimar a chamada função de regressão, definida por

r(x) := E[Y | X = x].

A motivação para estudar essa função está relacionada ao problema de minimizar o erro
quadrático. Para ilustrar, considere uma variável aleatória Z e a função objetivo

ϕ(t) = E[(Z− t)2],

em que buscamos o valor t ∈ R que minimiza ϕ(t). Derivando em relação a t e igualando a zero,
obtemos:

ϕ′(t) = E[2(Z− t)] = 0 ⇔ t = E[Z].

Portanto, o valor ótimo de t que minimiza o erro quadrático é justamente a esperança de Z.
Esse raciocínio se estende naturalmente ao contexto de regressão. Nosso objetivo passa a ser

encontrar uma função g(x) que minimize

ϕ(g) = E[(Y− g(X))2] = E
[
E
[
(Y− g(x))2 | X = x

]]
.

Fixando X = x, g(x) se comporta como um número, e, pelo argumento anterior, a minimização
local de E[(Y− g(x))2 | X = x] ocorre quando g∗(x) = E[Y | X = x].

Assim, a função de regressão r(x) é, sob a métrica de erro quadrático, a melhor escolha para
aproximar Y em função de x.

Exercício 3. Seja
φ(t) = E[|Z− t|].

Encontre o t que minimiza a expressão acima.

Agora, suponha que o modelo verdadeiro seja dado por Y = g∗(X) + ε, onde ε é um ruído
com E[ε] = 0, independente das covariáveis X. Nosso objetivo é estudar o erro quadrático
esperado de um modelo preditivo ĝ(x) que tenta estimar y a partir de x.

O erro de predição é medido pela perda quadrática (y − ĝ(x))2, e buscamos decompor o
valor esperado desse erro em três componentes: variância, viés ao quadrado e ruído irredutível,
considerando x fixado.

A função ótima g∗ é definida como:

g∗(x) = arg min
g

E
[
(y− g(x))2

]
.

Para a decomposição, começamos adicionando e subtraindo g∗(x) no termo de erro esperado:

E[(y− ĝ(x))2] = E[(y− g∗(x) + g∗(x)− ĝ(x))2].

Expandindo o quadrado, obtemos:

E[(y− g∗(x))2] + E[(g∗(x)− ĝ(x))2] + 2E[(y− g∗(x))(g∗(x)− ĝ(x))].

O primeiro termo, E[(y − g∗(x))2], representa a variância do ruído ε e, portanto, é irredutível.
O segundo termo, E[(g∗(x)− ĝ(x))2], captura o erro introduzido pelo modelo ĝ(x). O terceiro
termo é nulo, pois y− g∗(x) = ε tem média zero e é independente de ĝ(x).

2.2. DECOMPOSIÇÃO DE VIÉS-VARIÂNCIA EM REGRESSÃO 17

Portanto, temos a seguinte decomposição:

E[(y− ĝ(x))2] = E[(y− g∗(x))2]︸ ︷︷ ︸
ruído irreduzível

+E[(g∗(x)− ĝ(x))2].

Agora, o termo E[(g∗(x)− ĝ(x))2] pode ser decomposto em viés e variância:

E[(g∗(x)− ĝ(x))2] = E[(g∗(x)−E[ĝ(x)] + E[ĝ(x)]− ĝ(x))2]

= (g∗(x)−E[ĝ(x)])2 + Var(ĝ(x)),

onde o termo cruzado é novamente nulo por independência.
Finalmente, temos a seguinte decomposição clássica:

E[(y− ĝ(x))2] = E[(y− g∗(x))2]︸ ︷︷ ︸
ruído irredutível

+ (g∗(x)−E[ĝ(x)])2︸ ︷︷ ︸
viés2

+Var(ĝ(x))︸ ︷︷ ︸
variância

.

Essa decomposição nos permite entender um dos conceitos fundamentais em aprendizado de
máquina e estatística: o trade-off viés-variância. Em termos simples, existe uma relação inversa
entre o viés e a variância de um modelo. Modelos mais simples tendem a ter baixo variância, pois
suas previsões mudam pouco ao variar a amostra de treinamento, mas frequentemente apresen-
tam alto viés por não capturarem toda a complexidade da função g∗(x). Por outro lado, modelos
mais complexos conseguem ajustar melhor os dados e reduzir o viés, mas tendem a ter alta
variância, pois são mais sensíveis a flutuações nas amostras de treino. O desafio central em mo-
delagem preditiva é encontrar um equilíbrio entre essas duas quantidades, de modo a minimizar
o erro total. Esse equilíbrio é essencial para garantir que o modelo generalize bem para novos
dados, sem ser excessivamente simples (subajuste) ou excessivamente complexo (sobreajuste).

Resumindo: no caso da perda quadrática, o erro total pode ser decomposto como:

Erro Total = Erro Irredutível + Viés2 + Variância.

18 CAPÍTULO 2. FUNDAMENTOS DO APRENDIZADO SUPERVISIONADO

Exercício 4. Acesse o notebook aqui e faça experimentos com o código mudando o tamanho da amostra,
random state, grau dos polinômios, etc. Além disso, aplique o método de validação cruzada k-fold.

2.3 Data Splitting e Validação Cruzada

Em situações onde há abundância de dados, uma abordagem comum é dividir aleatoriamente o
conjunto em três partes: um conjunto de treinamento, um conjunto de validação e um conjunto
de teste. O conjunto de treinamento é utilizado para ajustar os modelos; o conjunto de validação
serve para estimar o erro de predição e realizar a seleção do modelo; e o conjunto de teste é
reservado para avaliar o erro de generalização final do modelo escolhido.

IMPORTANTE! Idealmente, o conjunto de teste deve ser mantido isolado — como se
estivesse em um "cofre"— e só ser acessado ao final da análise de dados. Caso utilizemos
o conjunto de teste de forma repetida durante a seleção do modelo, escolhendo aquele
com menor erro no teste, acabaremos subestimando o verdadeiro erro de generalização, às
vezes de maneira significativa.

Não há uma regra única para definir a quantidade de observações em cada uma das três
divisões, pois isso depende da razão sinal-ruído dos dados e do tamanho da amostra disponível.
Uma divisão típica é utilizar cerca de 50% dos dados para treinamento e 25% para validação e
teste, respectivamente.

Figura 2.2: Divisão em treino, validação e teste. Tirado de (Hastie et al., 2001).

No Python, podemos realizar essa divisão utilizando a biblioteca scikit-learn. O procedi-
mento padrão é, primeiramente, dividir os dados em duas partes: treino e teste. Em seguida,
subdividir a parte de treino em treino e validação.

Listing 2.1: Divisão em treino, validação e teste

1 from sklearn.model_selection import train_test_split
2

3 # Suponha que temos dados X e respostas Y
4 # X: matriz de covariaveis (n_samples x n_features)
5 # Y: vetor de respostas (n_samples ,)
6

7

8 # Primeira divisao: treino e restante (validacao + teste)
9 X_train , X_rest , Y_train , Y_rest = train_test_split(

10 X, Y, test_size =0.5, random_state =42)
11

https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/supervisionado/tr_val_ts_split_for_pol_reg.ipynb

2.3. DATA SPLITTING E VALIDAÇÃO CRUZADA 19

12 # Segunda divisao: validacao e teste a partir do restante
13 X_val , X_test , Y_val , Y_test = train_test_split(
14 X_rest , Y_rest , test_size =0.5, random_state =42)
15

16 print("Treino:", X_train.shape)
17 print("Validacao:", X_val.shape)
18 print("Teste:", X_test.shape)

No exemplo acima, separamos 25% dos dados para o conjunto de teste e, dos 75% restantes,
cerca de 33% foi alocado para validação. Assim, o resultado final aproximado seria: 50% dos
dados para treino, 25% para validação e 25% para teste, como discutido anteriormente.

ATENÇÃO: É importante definir o argumento random_state para garantir reprodutibili-
dade da divisão dos dados.

Embora a divisão treino/validação/teste seja bastante comum, em situações onde a quanti-
dade de dados é limitada, desperdiçar uma parte significativa da amostra apenas para validação
pode ser custoso. Nesse contexto, uma estratégia amplamente utilizada é a validação cruzada,
em especial o k-fold cross-validation.

A ideia do k-fold é dividir o conjunto de dados em k subconjuntos (ou folds) de tamanhos
aproximadamente iguais. Em cada uma das k iterações, utilizamos k − 1 desses subconjuntos
para treinar o modelo e o subconjunto restante para validá-lo. No final, o erro de validação é
calculado como a média dos erros obtidos em cada uma das iterações.

Figura 2.3: Esquema com amostra de tamanho 20 e 5 folds. Retirado de Izbicki and dos Santos
(2020).

Essa técnica tem como vantagem utilizar o máximo de dados possível para treinamento em

20 CAPÍTULO 2. FUNDAMENTOS DO APRENDIZADO SUPERVISIONADO

cada repetição, reduzindo a variância da estimativa do erro de generalização. Além disso, o k-fold
ajuda a mitigar a dependência da divisão aleatória dos dados, já que cada observação é utilizada
tanto para treino quanto para validação ao longo do processo.

No Python, a implementação do k-fold cross-validation pode ser feita utilizando a biblioteca
scikit-learn da seguinte maneira:

Listing 2.2: Validação cruzada k-fold

1 from sklearn.model_selection import KFold
2

3 # Suponha que temos dados X e respostas Y
4 k = 5
5 kf = KFold(n_splits=k, shuffle=True , random_state =42)
6

7 for fold , (train_index , val_index) in enumerate(kf.split(X)):
8 X_train , X_val = X[train_index], X[val_index]
9 Y_train , Y_val = Y[train_index], Y[val_index]

10 print(f"Fold {fold +1}:")
11 print("Treino:", X_train.shape , "Validacao:", X_val.shape)

No exemplo acima, o conjunto de dados é dividido em k = 5 subconjuntos. O argumento
shuffle=True garante que as observações sejam embaralhadas antes da divisão em folds, e o
random_state garante a reprodutibilidade dos resultados.

Exercício 5. Acesse o notebook aqui e faça experimentos com o código mudando o tamanho da amostra,
random state, etc.

https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/supervisionado/data_split.ipynb

Capítulo 3

Introdução à regressão via mínimos
quadrados

3.1 Mínimos quadrados

O método dos mínimos quadrados tem suas origens no início do século XIX e está intimamente ligado
à história da astronomia e da estatística. Ele foi introduzido formalmente por Carl Friedrich
Gauss, que o utilizava desde 1795 em seus trabalhos com órbitas planetárias, embora o primeiro
a publicar sobre o método tenha sido Adrien-Marie Legendre, em 1805.

Legendre apresentou o método em seu trabalho sobre o cálculo de órbitas cometárias, pro-
pondo uma técnica para ajustar curvas a dados experimentais minimizando a soma dos qua-
drados dos erros. Poucos anos depois, em 1809, Gauss publicou seu famoso livro Theoria Motus
Corporum Coelestium, onde apresentou uma justificativa probabilística do método com base na
distribuição normal dos erros.

Desde então, os mínimos quadrados tornaram-se uma das ferramentas fundamentais em
estatística, ciência de dados e análise numérica, sendo aplicados em regressão linear, ajuste de
modelos, filtragem de sinais e muitos outros contextos científicos e tecnológicos.

Motivados por esses contextos, consideremos agora o seguinte problema: queremos encontrar
um vetor β tal que

y = Xβ.

Essa expressão possui solução se, e somente se, y ∈ Ran X. Mas o que podemos fazer quando
queremos resolver uma equação que não tem solução? Por exemplo, se y = Xβ + ε onde ε é um
erro aleatório de medição?

À primeira vista, essa pode parecer uma pergunta boba, pois se não há solução, então não
há solução. No entanto, situações em que desejamos resolver uma equação sem solução podem
surgir naturalmente — por exemplo, quando a equação vem de dados experimentais. Se não
houver nenhum erro, o vetor do lado direito y pertence à imagem de X, e a equação é consistente.

Porém, na prática, é impossível eliminar completamente os erros de medição. Assim, pode
acontecer de uma equação que teoricamente deveria ser consistente não possuir solução.

O que fazer, então, nessa situação?

21

22 CAPÍTULO 3. INTRODUÇÃO À REGRESSÃO VIA MÍNIMOS QUADRADOS

A ideia mais simples é escrever o erro na forma

∥Xβ− y∥

e tentar encontrar o vetor β que minimiza essa quantidade. Se conseguirmos encontrar um β tal
que o erro seja zero, então o sistema é consistente e temos uma solução exata. Caso contrário,
obtemos a chamada solução de mínimos quadrados.

O nome mínimos quadrados vem do fato de que minimizar ∥Xβ− y∥ é equivalente a minimizar

∥Xβ− y∥2 =
m

∑
k=1
|(Xβ)k − yk|2 =

m

∑
k=1

∣∣∣∣∣ n

∑
j=1

Xk,jβ j − yk

∣∣∣∣∣
2

,

isto é, estamos minimizando a soma dos quadrados de funções lineares.
Existem diversas maneiras de encontrar a solução de mínimos quadrados. Se estivermos em

Rn, e tudo for real, podemos ignorar os valores absolutos. Nesse caso, basta calcular as derivadas
parciais em relação a cada β j e encontrar onde todas elas se anulam — o que nos dará o ponto
de mínimo.

Exercício 6. Encontre a solução do problema de mínimos quadrados derivando e igualando à zero.

Existe uma forma mais simples de encontrar o mínimo. De fato, ao considerarmos todos os
vetores β, o vetor Xβ percorre todo o espaço imagem de X, ou seja, Ran X. Portanto, minimizar
∥Xβ− y∥ equivale a calcular a menor distância de y até Ran X.

Assim, ∥Xβ− y∥2 é mínima se, e somente se,

Xβ = PRan Xy,

onde PRan X denota a projeção ortogonal de y sobre o subespaço imagem de X.
Se conhecemos uma base ortogonal v1, . . . , vn de Ran X, podemos calcular PRan Xy pela fór-

mula:

PRan Xy =
n

∑
k=1

⟨y, vk⟩
∥vk∥2 vk.

Caso só tenhamos uma base qualquer de Ran X, é necessário utilizar o processo de Gram–
Schmidt para ortogonalizá-la antes de aplicar a fórmula.

Existe, no entanto, uma alternativa mais direta. A condição de que Xβ = PRan Xy é equivalente
a exigir que o vetor y− Xβ seja ortogonal a Ran X, ou seja,

y− Xβ ⊥ coluna de X.

Seja X = [a1, a2, . . . , an], onde cada ak é uma coluna. A condição acima é equivalente a:

⟨y− Xβ, ak⟩ = 0, para k = 1, 2, . . . , n.

Ou, de forma matricial:
X∗(y− Xβ) = 0,

o que é equivalente à chamada equação normal:

X∗Xβ = X∗y.

3.1. MÍNIMOS QUADRADOS 23

Figura 3.1: Projeção ortogonal de y no espaço coluna de X.

A solução dessa equação nos fornece a solução de mínimos quadrados da equação Xβ = y.
Note que a solução é única se, e somente se, X∗X for inversível.

Agora, se β é uma solução da equação normal X∗Xβ = X∗y (ou seja, uma solução de mínimos
quadrados da equação Xβ = y), então Xβ = PRan Xy. Assim, para encontrar a projeção ortogonal
de y sobre o espaço coluna Ran X, basta resolver a equação normal X∗Xβ = X∗y e multiplicar a
solução por X.

Se o operador X∗X for inversível, então a solução da equação normal é dada por:

β = (X∗X)−1X∗y,

e, portanto, a projeção ortogonal PRan Xy pode ser escrita como:

PRan Xy = X(X∗X)−1X∗y.

Como isso vale para todo y, obtemos a expressão matricial da projeção ortogonal sobre o
espaço coluna de X:

PRan X = X(X∗X)−1X∗.

24 CAPÍTULO 3. INTRODUÇÃO À REGRESSÃO VIA MÍNIMOS QUADRADOS

Observação 1. Note que a expressão

PRan X = X(X∗X)−1X∗.

é uma generalização matricial para a projeção ortogonal em vetores da forma

vvT

vTv
= v(vTv)−1vT,

já que para um vetor x qualquer,

⟨v, x⟩
∥v∥2 v =

vTx
∥v∥2 v =

vvTx
∥v∥2 =

vvT

∥v∥2 x.

Exemplo 1. Suponha que sabemos que a relação entre x e y é dada por uma parábola da forma

y = a + bx + cx2,

e queremos ajustar essa parábola aos dados observados. Os coeficientes desconhecidos a, b, c devem satisfazer
o sistema:

a + bxk + cx2
k = yk, k = 1, 2, . . . , n.

Em forma matricial, esse sistema pode ser escrito como:
1 x1 x2

1

1 x2 x2
2

...
...

...
1 xn x2

n


a

b
c

 =


y1

y2
...

yn

 .

Por exemplo, para os dados do exemplo anterior, devemos resolver a equação de mínimos quadrados:
1 −2 4
1 −1 1
1 0 0
1 1 1
1 3 9


a

b
c

 =


4
2
1
1
1

 .

Então calculamos:

XTX =

 1 1 1 1 1
−2 −1 0 1 3
4 1 0 1 9




1 −2 4
1 −1 1
1 0 0
1 1 1
1 3 9

 =

 5 2 18
2 18 26
18 26 114

 .

E também:

XTy =

 1 1 1 1 1
−2 −1 0 1 3
4 1 0 1 9




4
2
1
1
1

 =

 9
−5
31

 .

3.2. RESOLUÇÃO NUMÉRICA 25

Portanto, a equação normal XTXβ = XTy é: 5 2 18
2 18 26
18 26 114


a

b
c

 =

 9
−5
31

 ,

cuja solução única é:

a =
86
77

, b = −62
77

, c =
43
154

.

Portanto, a parábola que melhor se ajusta aos dados é:

y =
86
77
− 62

77
x +

43
154

x2.

3.2 Resolução Numérica

A forma fechada da solução dos mínimos quadrados, dada por

(X⊤X)β̂ = X⊤y⇒ β̂ = (X⊤X)−1X⊤y,

embora útil em termos analíticos, pode ser instável numericamente e custosa para grandes di-
mensões. Assim, é comum empregar abordagens numéricas mais robustas.

Fatoração QR. Um método bastante utilizado é a decomposição QR, na qual a matriz X ∈ Rn×p

é escrita como X = QR, onde Q possui colunas ortonormais (ou seja, Q⊤Q = I) e R ∈ Rp×p é
triangular superior. Essa fatoração evita a inversão direta da matriz X⊤X e proporciona maior
estabilidade numérica.

Como X⊤X = R⊤Q⊤QR = R⊤R, temos:

(X⊤X)β̂ = X⊤y ⇐⇒ R⊤Rβ̂ = R⊤Q⊤y ⇐⇒ Rβ̂ = Q⊤y.

Portanto, basta resolver um sistema linear triangular com matriz R, o que é computacional-
mente eficiente. O custo total permanece na ordem de O(d3). Em situações onde d é grande,
métodos iterativos como o gradiente conjugado também podem ser considerados (ver Golub e
Loan, 1996).

3.3 Estimativas de erros para regressão linear

Como vimos no primeiro capítulo, um conceito central na análise de métodos de aprendizado
de máquina é compreender o comportamento de viés e variância do modelo.

Vamos assumir que os dados seguem o modelo

y = ⟨x, β⟩+ ε,

com E[ε] = 0 e Var(ε) = σ2 e os pontos x estão fixos, ou seja, a aleatoriedade é apenas sobre o
erro ε. Seja β̂ = (X⊤X)−1X⊤y a solução obtida por mínimos quadrados. Então:

26 CAPÍTULO 3. INTRODUÇÃO À REGRESSÃO VIA MÍNIMOS QUADRADOS

E[β̂] = (X⊤X)−1X⊤E[y] = (X⊤X)−1X⊤Xβ = β,

isto é, o estimador é não-viesado.
Agora vamos estimar o risco dado que estamos utilizando o estimador β̂, ou seja:

R(β̂) =
1
n

E
[
∥y− Xβ̂∥2] ,

Precisamos ter atenção redobrada na aleatoriedade da expressão acima, isso porque o erro que
existe no nosso dataset no momento da estimação de β̂ é potencialmente diferente do erro utili-
zado no cálculo do risco. Podemos representar isso da seguinte forma

R(β̂) =
1
n

E
[
∥y′ − X(XTX)−1XTy∥2

]
.

Novamente, temos um y′ que será utilizado no cálculo do risco, e um y que é utilizado no cálculo
de β̂. Suponha então que y′ = Xβ + ε′ e que y = Xβ + ε. Logo, a expressão acima fica:

R(β̂) =
1
n

E
[
∥y′ − X(XTX)−1XTy∥2

]
=

1
n

E
[
∥Xβ + ε′ − X(XTX)−1XT(Xβ + ε)∥2

]
=

1
n

E
[
∥ε′ − X(XTX)−1XTε∥2

]
=

1
n

E
[
∥ε′∥2]− 2

n
E
[
⟨ε′, X(XTX)−1XTε⟩

]
+

1
n

E
[
εTX(XTX)−1XTX(XTX)−1XTε

]
= σ2 − 2

n
E
[
ε′TX(XTX)−1XTε

]
+

1
n

E
[
εTX(XTX)−1XTε

]
Agora note que temos dois casos possíveis:

• Se ε′ = ε, isto é, y = y′, temos que a expressão acima fica:

R(β̂) = σ2 − 1
n

E
[
εTX(XTX)−1XTε

]
= σ2 − 1

n
E
[
tr(εTX(XTX)−1XTε)

]
= σ2 − 1

n
E
[
tr(εεTX(XTX)−1XT)

]
= σ2 − σ2 p

n
e como estamos usando o mesmo y para estimar e avaliar o modelos, essa quantidade se
refere ao erro de treinamento!

• Se ε′ e ε são independentes, isto é, y e y′ são independentes, então

E
[
ε′TX(XTX)−1XTε

]
= E

[
ε′T
]

E
[

X(XTX)−1XTε
]
= 0

e portanto a expressão fica:

R(β̂) = σ2 1
n

E
[
εTX(XTX)−1XTε

]
= σ2 +

σ2 p
n

.

3.4. UM POUCO DE INFERÊNCIA 27

Nesse caso, como o y utilizando para treinamento e o y′ utilizado para estimação do risco
são diferentes, a quantidade acima se refere ao erro de teste!

• O erro de treinamento esperado é
(
1− p

n

)
σ2, enquanto o erro de teste esperado é(

1 + p
n

)
σ2. Isso mostra que o erro de treinamento subestima o erro de teste em 2σ2 p

n ,
caracterizando o overfitting. Essa diferença pode ser usada para seleção de modelos.

• Para que o risco excessivo seja pequeno comparado a σ2, é necessário que p
n seja

pequeno. Isso dificulta a aplicação direta de mínimos quadrados em situações de alta
dimensionalidade, onde p ≈ n ou p ≫ n. Nesses casos, técnicas de regularização,
como regressão ridge ou penalizações com norma-ℓ1, são necessárias.

3.4 Um pouco de inferência

Perceba que a teoria acima não depende de informações sobre os dados — a única coisa que
fizemos foi encontrar a melhor aproximação de y no espaço gerado pelas colunas de X. Ou seja,
tratamos X e y como vetores fixos, e a projeção ortogonal PRan Xy é puramente uma construção
geométrica.

Suponha agora que temos um modelo probabilístico associado aos dados:

Y = ⟨x, β⟩+ ε, ε ∼ N(0, 1),

onde x ∈ Rp é um vetor fixo (não aleatório), β ∈ Rp é o vetor de parâmetros desconhecido, e ε é
um erro aleatório com distribuição normal padrão.

Se coletamos n observações (xi, Yi), i = 1, . . . , n, podemos escrever o modelo vetorialmente
como:

y = Xβ + ε,

onde:

• y ∈ Rn é o vetor de respostas;

• X ∈ Rn×p é a matriz cujas linhas são os vetores xT
i ;

• ε ∼ N(0, In) é o vetor de erros independentes com variância 1.

Neste caso, a estimativa de mínimos quadrados:

β̂ = (X∗X)−1X∗y

é também o estimador de máxima verossimilhança de β sob o modelo gaussiano. Além disso, por ser
combinação linear de variáveis gaussianas, β̂ é também uma variável aleatória com distribuição
normal.

Teorema 1. Se y = Xβ + ε, com ε ∼ N(0, In), então:

β̂ = (X∗X)−1X∗y ∼ N
(

β, (X∗X)−1
)

.

28 CAPÍTULO 3. INTRODUÇÃO À REGRESSÃO VIA MÍNIMOS QUADRADOS

Demonstração. Note que:

β̂ = (X∗X)−1X∗y = (X∗X)−1X∗(Xβ + ε) = β + (X∗X)−1X∗ε.

Como ε ∼ N(0, In), e (X∗X)−1X∗ε é uma combinação linear de gaussianas, então:

β̂ ∼ N
(

β, (X∗X)−1X∗X(X∗X)−1
)
= N

(
β, (X∗X)−1

)
.

Essa propriedade permite que façamos inferência estatística sobre os coeficientes β. Por exem-
plo, para testar a hipótese nula:

H0 : β j = 0,

podemos usar o fato de que:

β̂ j ∼ N(β j, σ2
j), com σ2

j = [(X∗X)−1]jj.

Ou seja, o valor padronizado

Zj =
β̂ j√
σ2

j

∼ N(0, 1) sob H0.

Isso nos permite construir intervalos de confiança e calcular valores-p.

Exemplo 2. Suponha que queremos um intervalo de confiança para β j com nível de confiança 1− α. Como
β̂ j ∼ N(β j, σ2

j), temos:

P
(

β̂ j − zα/2

√
σ2

j ≤ β j ≤ β̂ j + zα/2

√
σ2

j

)
= 1− α,

onde zα/2 é o quantil superior de ordem 1− α/2 da normal padrão.

Para mais detalhes sobre inferência de parâmetros, ver (James et al., 2013, Capítulo 3).

Bibliografia

Bach (2024)

Capítulo 4

Introdução à classificação via regressão
logística

4.1 Classificador de Bayes

Sejam (X1, Y1), . . . , (Xn, Yn) amostras independentes e identicamente distribuídas, onde Xi ∈ Rp

representa um vetor de características e Yi ∈ {0, 1} é o rótulo associado. O objetivo é construir
um classificador ĝ : Rp → {0, 1} que prediga Y a partir de X.

Uma forma comum de avaliar o desempenho de um classificador g é por meio da função de
perda 0–1, definida por

L(g(x), y) =

0, se g(x) = y,

1, caso contrário.

O risco verdadeiro associado a g é dado por

R(g) = E[L(g(X), Y)],

onde a esperança é tomada em relação à distribuição conjunta de (X, Y).
Como vimos anteriormente, no contexto de regressão com perda quadrática, a função ótima

é dada por
g∗(x) = E[Y | X = x],

isto é, a média condicional de y dado X.
No caso de classificação binária com perda 0–1, a função ótima assume uma forma diferente.

Vamos agora investigar qual é a forma da função g∗ que minimiza o risco verdadeiro.

Teorema 2 (Classificador de Bayes e risco 0–1). Seja η(x) = P(Y = 1 | X = x). O classificador de
Bayes g∗ é definido por

g∗(x) =

1, se η(x) ≥ 0,5,

0, caso contrário.

Denotamos por R∗ o menor risco verdadeiro possível, isto é,

R∗ = inf
g

E[L(g(X), Y)].

Então, valem os seguintes resultados:

29

30 CAPÍTULO 4. INTRODUÇÃO À CLASSIFICAÇÃO VIA REGRESSÃO LOGÍSTICA

(a) R(h∗) = R∗, ou seja, h∗ minimiza o risco verdadeiro e é um classificador de Bayes.

(b) Para qualquer classificador h, o excesso de risco satisfaz

R(h)− R∗ = 2 EX [|η(X)− 0,5| · I{h(X) ̸= h∗(X)}] .

Demonstração. Item (a). Note que

E [L(g(x), Y)] = E [I {g(X) ̸= Y}]
= EX [E [I {g(X) ̸= Y} |X = x]] .

Vamos analisar a expressão dentro da esperança condicional em X. Temos:

E[I{g(X) ̸= Y} | X = x] = P(g(X) ̸= Y | X = x)

= P(0 ̸= Y | X = x) I{g(x) = 0}+ P(1 ̸= Y | X = x) I{g(x) = 1}
= P(Y = 1 | X = x) I{g(x) = 0}+ P(Y = 0 | X = x) I{g(x) = 1}
= η(x) I{g(x) = 0}+ (1− η(x)) I{g(x) = 1}.

Nosso objetivo é encontrar a função g que minimiza essa expressão. Para isso, basta decidir,
para cada x, se devemos escolher g(x) = 0 ou g(x) = 1. Analisamos caso a caso:

• Se η(x) ≥ 0,5, então 1− η(x) ≤ η(x). Nesse caso, a expressão é minimizada escolhendo
g(x) = 1, pois isso anula o termo com η(x), restando apenas o menor entre os dois.

• Se η(x) < 0,5, então η(x) < 1− η(x), e a expressão é minimizada com g(x) = 0.

Portanto, a função g∗ definida no teorema de fato minimiza o risco verdadeiro, o que conclui
a demonstração do item (a).
Item (b). Queremos mostrar que, para qualquer classificador g,

R(h)− R∗ = 2 EX [|η(X)− 0,5| · I{h(X) ̸= h∗(X)}] .

Começamos com a definição do excesso de risco:

R(h)− R(g∗) = EX [η(X) I{g(X) = 0}+ (1− η(X)) I{g(X) = 1}]
−EX [η(X) I{g∗(X) = 0}+ (1− η(X)) I{g∗(X) = 1}] .

Note que a expressão dentro da esperança é nula quando g(x) = g∗(x), logo só precisamos
analisar o que acontece quando g(x) ̸= g∗(x).

• Se g∗(x) = 1, só precisamos analisar o caso de g(x) = 0 e daí temos que

R(h)− R(g∗) = EX [η(X) I{g(X) = 0}+ (1− η(X)) I{g(X) = 1}]
−EX [η(X) I{g∗(X) = 0}+ (1− η(X)) I{g∗(X) = 1}]

= −(1− η(X)) + η(X)

= 2η(x)− 1.

Note que como assumimos que g∗(x) = 1, então η(x) ≥ 0.5 e portanto 2η(x)− 1 ≥ 0.

4.1. CLASSIFICADOR DE BAYES 31

• Se g∗(x) = 0, concluímos de forma análoga que

R(h)− R(g∗) = 1− 2η(x).

Nesse caso, como g∗(x) = 0, temos que η(x) < .5 e dessa forma 1− 2η(x) ≥ 0. De fato,
podemos expressar a solução de forma geral na seguinte forma:

R(h)− R∗ = 2 EX [|η(X)− 0,5| · I{h(X) ̸= h∗(X)}] .

Isso prova o item (b).

A expressão do item (b) nos dá uma intuição importante: o excesso de risco é mais sensível
a erros de classificação quando η(X) está longe de 0.5, ou seja, quando a incerteza sobre a
classe é baixa. Nesses pontos, errar significa contrariar uma alta confiança, o que resulta
em um aumento maior no risco. Por outro lado, se η(X) está próximo de 0,5, mesmo que
g(X) ̸= g∗(X), o impacto no risco é pequeno. Assim, o termo |η(X)− 0,5| atua como um
peso que penaliza mais fortemente os erros onde a decisão ótima é mais evidente.

4.1.1 O Modelo Logístico

Uma vez entendido o papel da função η(x) = P(Y = 1 | X = x) como componente central da
regra de Bayes, torna-se natural buscar maneiras de aproximar essa função a partir dos dados
via um estimador g. Um dos modelos mais clássicos para esse fim é a regressão logística.

A ideia é modelar diretamente a probabilidade condicional P(Y = 1 | X = x) como uma
função dos preditores. Um primeiro impulso seria utilizar um modelo linear do tipo g(x) =

⟨β, x⟩, mas essa abordagem apresenta um problema fundamental: a função linear pode assumir
valores fora do intervalo [0, 1], o que é inaceitável para probabilidades.

Para contornar essa limitação, adotamos uma função que mapeia qualquer valor real para o
intervalo (0, 1). Na regressão logística, usamos a função logística:

g(x) =
e⟨β,x⟩

1 + e⟨β,x⟩ .

É fácil ver que

1− g(x) =
1

1 + e⟨β,x⟩ .

Essa formulação garante que g(x) ∈ (0, 1) para todo x ∈ Rp. Podemos reescrever essa
expressão como

g(x)
1− g(x)

= e⟨β,x⟩.

A razão g(x)/[1 − g(x)] é chamada de odds e pode assumir qualquer valor entre 0 e ∞.
Valores de odds próximos de 0 indicam probabilidades muito baixas, enquanto valores muito
altos indicam alta probabilidade da classe positiva. Por exemplo, g(x) = 0,2 implica uma odds

32 CAPÍTULO 4. INTRODUÇÃO À CLASSIFICAÇÃO VIA REGRESSÃO LOGÍSTICA

de 0,2
1−0,2 = 1/4, o que corresponde a 1 em cada 5 indivíduos da classe positiva. Já g(x) = 0,9

implica uma odds de 0,9
1−0,9 = 9, ou seja, 9 em cada 10.

Odds são tradicionalmente usadas em vez de probabilidades em contextos como apostas, pois
se relacionam mais diretamente com estratégias de decisão.

Tomando o logaritmo de ambos os lados da expressão anterior, obtemos:

log
(

g(x)
1− g(x)

)
= ⟨β, x⟩.

A expressão à esquerda é chamada de log odds ou logito. Observamos, assim, que o modelo de
regressão logística possui um logito linear em x, o que permite tanto uma interpretação estatística
clara quanto facilidade de ajuste computacional.

4.1.2 Estimando os Coeficientes da Regressão

Os coeficientes β no modelo logístico são desconhecidos e devem ser estimados a partir dos
dados de treinamento disponíveis. Embora uma abordagem possível seja o uso de mínimos
quadrados não lineares, o método mais comum e preferido é o de máxima verossimilhança, por
apresentar melhores propriedades estatísticas.

A intuição básica por trás do uso da máxima verossimilhança para ajustar um modelo de
regressão logística é a seguinte: buscamos encontrar um vetor β tal que a probabilidade predita
ĝ(xi) para cada observação se aproxime o máximo possível dos valores reais observados Yi ∈
{0, 1}.

Em outras palavras, queremos que ĝ(xi) ≈ 1 para os indivíduos com Yi = 1, e ĝ(xi) ≈ 0 para
os indivíduos com Yi = 0. Essa ideia pode ser formalizada por meio de uma função chamada
função de verossimilhança, dada por:

ℓ(β) = ∏
i:Yi=1

g(xi) ∏
i:Yi=0

(1− g(xi)).

Mais especificamente, podemos reescrever a função de verossimilhança como:

n

∏
k=1

(
eβ0+∑

p
i=1 βixk,i

1 + eβ0+∑
p
i=1 βixk,i

)yk (
1

1 + eβ0+∑
p
i=1 βixk,i

)1−yk

.

Essa forma incorpora tanto os casos em que Yk = 1 quanto Yk = 0 em uma única expressão
compacta.

Tomando o logaritmo da função de verossimilhança, obtemos a log-verossimilhança:

log ℓ(β) =
n

∑
k=1

[
yk log

(
eβ0+∑d

i=1 βixk,i

1 + eβ0+∑d
i=1 βixk,i

)
+ (1− yk) log

(
1

1 + eβ0+∑d
i=1 βixk,i

)]
.

Simplificando os logaritmos, essa expressão pode ser reescrita como:

log ℓ(β) =
n

∑
k=1

[
yk⟨β, xk⟩ − log

(
1 + e⟨β,xk⟩

)]
,

onde xk ∈ Rd inclui o termo de intercepto (ou seja, supomos xk = (1, xk,1, . . . , xk,d)) e β ∈ Rd+1.

4.2. UM POUCO DE OTIMIZAÇÃO - O MÉTODO DE NEWTON 33

4.2 Um pouco de otimização - O método de Newton

Antes de maximizar a log-verossimilhança, introduzimos o Método de Newton. O Método de
Newton é um algoritmo iterativo usado para encontrar raízes de uma função. No caso univari-
ado, sua implementação segue os seguintes passos:

1. Encontre a reta tangente à função f (x) no ponto atual (xn, yn), com:

y = f ′(xn)(x− xn) + f (xn).

2. Calcule a interseção da reta tangente com o eixo x, isto é, determine xn+1 tal que f (xn+1) =

0. Para isso, impomos:
0 = f ′(xn)(xn+1 − xn) + f (xn),

o que resulta em:

xn+1 = xn −
f (xn)

f ′(xn)
.

3. Avalie a função no novo ponto:
yn+1 = f (xn+1).

4. Verifique o critério de parada: se yn+1 − yn ≈ 0, então:

return yn+1 (convergência atingida).

5. Caso contrário, atualize o ponto:

xn ← xn+1, yn ← yn+1,

e volte ao passo 1.

Para uma ilustração, ver o seguinte gif.
Em resumo, o Método de Newton para uma variável consiste em atualizar iterativamente o

ponto atual segundo a fórmula

xn+1 = xn −
f (xn)

f ′(xn)
,

até que a diferença entre xn e xn+1 seja suficientemente pequena, isto é, até que |xn − xn+1| ≈ 0.
Esse procedimento corresponde a encontrar o ponto onde a função f se anula, aproximando-se
da raiz por meio das tangentes locais.

Se f é uma função fortemente convexa com hessiana Lipschitz contínua, então, desde que o
ponto inicial x0 esteja suficientemente próximo de x∗ = arg min f (x), a sequência x0, x1, x2, . . .
gerada pelo Método de Newton converge para o minimizador (necessariamente único) x∗ de f
com taxa de convergência quadrática.

Embora o Método de Newton seja frequentemente apresentado como um algoritmo para
encontrar raízes de funções (isto é, soluções de f (x) = 0), ele também pode ser usado para
encontrar pontos críticos de uma função f : Rd → R, ou seja, pontos onde o gradiente ∇ f (x) se
anula.

https://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif

34 CAPÍTULO 4. INTRODUÇÃO À CLASSIFICAÇÃO VIA REGRESSÃO LOGÍSTICA

Para maximizar uma função f , podemos aplicar o Método de Newton à equação ∇ f (x) = 0.
Nesse caso, a atualização iterativa assume a forma:

xk+1 = xk −
[
∇2 f (xk)

]−1∇ f (xk),

onde ∇ f (xk) é o gradiente de f no ponto xk, e ∇2 f (xk) é a hessiana (a matriz de derivadas
segundas).

Se a matriz hessiana for negativa definida, então xk está em uma vizinhança de um ponto de
máximo local de f , e a iteração de Newton caminha nessa direção. O método é particularmente
eficiente quando f é suave (duas vezes diferenciável) e fortemente côncava, pois a convergência
é rápida e quadrática nas proximidades do máximo.

Em problemas de otimização como a regressão logística, onde queremos maximizar a log-
verossimilhança, esse procedimento é especialmente útil: basta aplicar o Método de Newton à
função log-verossimilhança log ℓ(β) para obter uma sequência de estimativas para os coeficientes
β.

Para maximizar a log-verossimilhança de uma regressão logística, usamos o Método de New-
ton aplicando-o à função

ℓ(β) =
n

∑
i=1

[
Yi⟨β, xi⟩ − log

(
1 + e⟨β,xi⟩

)]
.

• Gradiente: o vetor gradiente da log-verossimilhança em relação a β ∈ Rd é dado por:

∇ℓ(β) =
n

∑
i=1

(Yi − g(xi)) xi,

onde g(xi) =
e⟨β,xi⟩

1+e⟨β,xi⟩
é a predição do modelo logístico no ponto xi. Essa expressão pode ser

escrita matricialmente como:
∇ℓ(β) = X⊤(Y− ĝ),

em que X ∈ Rn×d é a matriz de design, Y ∈ Rn o vetor de respostas e ĝ ∈ Rn o vetor das
probabilidades preditas.

• Hessiana: a matriz hessiana da log-verossimilhança é dada por:

∇2ℓ(β) = −X⊤WX,

onde W ∈ Rn×n é uma matriz diagonal com elementos

Wii = g(xi)(1− g(xi)).

Exercício 7. Prove a expressão do gradiente e hessiana em dimensão 1 e se convença que vale para dimen-
sões maiores.

Note que a hessiana é negativa definida sempre que 0 < g(xi) < 1, o que garante que estamos
maximizando uma função côncava. O método de Newton atualiza os parâmetros pela regra:

βk+1 = βk −
[
∇2ℓ(βk)

]−1∇ℓ(βk).

No notebook que você encontra aqui, apresentamos uma implementação do método de New-
ton para resolver o problema de regressão logística via maximização da verossimilhança.

Exercício 8. Entenda o código acima.

https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/logistica/newton.ipynb

4.3. OUTRAS MÉTRICAS DE AVALIAÇÃO 35

4.3 Outras métricas de avaliação

Nem sempre a função de risco R(g) = E[I(Y ̸= g(X))] = P(Y ̸= g(X)) fornece uma visão
completa da qualidade de um classificador g. Em certos contextos, como detecção de doenças
raras, o risco pode parecer pequeno mesmo quando o desempenho do modelo está longe do
ideal.

Considere, por exemplo, um cenário em que Y = 1 representa um paciente doente, e Y = 0,
um paciente saudável. Suponha que, numa amostra de 1.000 indivíduos, apenas 10 estejam
doentes. Um classificador trivial que sempre prediz g(x) = 0 (isto é, que todos são saudáveis)
terá risco muito baixo, pois P(Y = 1) é pequena. No entanto, tal modelo falha completamente
em identificar os casos realmente relevantes — os pacientes doentes.

Para melhor avaliar o desempenho de classificadores, especialmente em situações de des-
balanceamento de classes, é comum recorrer ao uso de matrizes de confusão, que distinguem
corretamente os diferentes tipos de acerto e erro. A seguir, apresentamos um exemplo típico:

Predição Valor real
Y = 0 Y = 1

g(x) = 0 VN (negativo verdadeiro) FN (falso negativo)
g(x) = 1 FP (falso positivo) VP (positivo verdadeiro)

Tabela 4.1: Matriz de confusão.

A partir dessa tabela, podemos definir diversas métricas de desempenho. Uma delas é:

• Sensibilidade (ou recall):

Sensibilidade =
VP

VP + FN

que representa a proporção de indivíduos doentes corretamente identificados pelo classifi-
cador.

• Especificidade:

Especificidade =
VN

VN + FP

Mede a proporção de indivíduos saudáveis corretamente identificados como tais.

• Valor preditivo positivo (ou precisão):

VPP =
VP

VP + FP

Indica, entre os exemplos classificados como positivos, quantos de fato são positivos.

• Valor preditivo negativo:

VPN =
VN

VN + FN

Representa a proporção de negativos corretos entre os exemplos classificados como negati-
vos.

36 CAPÍTULO 4. INTRODUÇÃO À CLASSIFICAÇÃO VIA REGRESSÃO LOGÍSTICA

• Medida F1:
F1 =

2 · Recall · Precision
Recall + Precision

que é a média harmônica entre sensibilidade (S) e precisão (VPP), sendo útil para balancear
ambas as medidas.

Considere novamente o classificador constante g(x) ≡ 0. Neste caso, ele nunca prevê a classe
positiva. Isso resulta em sensibilidade igual a zero (pois nenhum positivo é detectado) e especifi-
cidade igual a um (todos os negativos são corretamente identificados). Apesar de apresentar um
bom desempenho segundo a especificidade, esse modelo é incapaz de detectar os casos relevan-
tes (os positivos), tornando seu uso questionável.

Por isso, é fundamental considerar múltiplas métricas, principalmente em contextos de dese-
quilíbrio entre classes — como em problemas médicos, onde a classe positiva pode representar
uma condição rara.

As estatísticas derivadas da matriz de confusão devem ser interpretadas como estimativas
amostrais de probabilidades condicionais. Por exemplo, a sensibilidade estima P(g(X) = 1 |
Y = 1), enquanto a especificidade estima P(g(X) = 0 | Y = 0). Para garantir validade e evitar
vieses, especialmente sobreajuste, é importante que essas métricas sejam calculadas em uma
amostra separada de teste ou validação.

4.4 Ajuste do limiar de decisão

Classificadores probabilísticos, como a regressão logística, produzem uma estimativa da proba-
bilidade condicional g(x) = P(Y = 1 | X = x). Para converter essa predição contínua em uma
decisão binária (classe 0 ou 1), é necessário escolher um limiar de corte t ∈ [0, 1]. O valor padrão
mais comum é t = 0,5, ou seja, prediz-se a classe positiva sempre que g(x) ≥ 0,5.

No entanto, esse limiar pode ser ajustado de forma estratégica. Em particular, quando as
classes estão desbalanceadas — por exemplo, se a classe positiva é rara — o uso de um li-
miar padrão pode resultar em desempenho insatisfatório. Um classificador pode, por exemplo,
raramente atribuir probabilidades maiores que 0,5 à classe positiva, mesmo quando está relati-
vamente confiante, simplesmente porque a classe é rara nos dados.

Ao reduzir o limiar t, tornamo-nos mais propensos a prever a classe positiva, o que tende
a aumentar a sensibilidade (recall) — isto é, aumentamos a chance de detectar os verdadeiros
positivos. Por outro lado, essa mudança normalmente reduz a precisão (VPP), já que mais
exemplos negativos podem ser erroneamente classificados como positivos.

De modo análogo, aumentar o limiar tende a aumentar a precisão, mas à custa da sensibili-
dade.

Limiar t Recall Precisão
baixo (↓ t) alto baixo
alto (↑ t) baixo alto

Esse comportamento reflete um trade-off clássico. Em aplicações médicas, por exemplo, pode-
se preferir alta sensibilidade para evitar deixar passar casos positivos, mesmo que isso implique

4.4. AJUSTE DO LIMIAR DE DECISÃO 37

em mais falsos positivos. Já em sistemas de recomendação, pode ser mais importante manter alta
precisão, mesmo que alguns casos positivos sejam perdidos.

Na prática, o limiar ideal pode ser escolhido com base em uma métrica combinada (como F1-
score) ou por análise da curva ROC ou curva precisão-recall, conforme os objetivos do problema.

4.4.1 Escolhendo o limiar de decisão

A escolha do limiar t é, em muitos casos, uma decisão crítica e depende diretamente do contexto
e dos custos associados aos diferentes tipos de erro. Não existe um valor universalmente ótimo:
o melhor limiar depende dos objetivos do problema, das consequências práticas dos erros e da
distribuição das classes. Abaixo exibimos algumas possibilidades para encontar o corte ótimo.

Maximizar F1

Uma forma prática de selecionar t é por meio da otimização de alguma métrica de desempenho,
como a F1-score, que busca um equilíbrio entre precisão e recall. O limiar ótimo nesse caso seria:

t∗ = arg max
t

F1-score(t).

Curva ROC

A curva ROC (Receiver Operating Characteristic) é uma ferramenta gráfica amplamente utilizada
para avaliar o desempenho de classificadores binários. Ela é construída variando o limiar de
decisão t e observando como isso afeta duas métricas fundamentais:

• Taxa de verdadeiros positivos (TVP) ou sensibilidade:

TVP =
VP

VP + FN
,

que mede a proporção de positivos corretamente identificados.

• Taxa de falsos positivos (TFP):

TFP =
FP

FP + VN
,

que mede a proporção de negativos incorretamente classificados como positivos.

A curva ROC é um gráfico onde a TFP é colocada no eixo horizontal e a TVP no eixo vertical.
Cada ponto da curva corresponde ao desempenho do classificador para um determinado limiar
t ∈ [0, 1].

O comportamento da curva é o seguinte:

• Para limiares muito baixos (por exemplo, t ≈ 0), o classificador tende a prever quase tudo
como positivo. Isso resulta em uma TVP alta, mas também em uma TFP alta.

• Para limiares muito altos (por exemplo, t ≈ 1), o classificador quase nunca prevê a classe
positiva. Assim, tanto a TVP quanto a TFP são baixas.

• Conforme o limiar varia, a curva se forma conectando esses pares (TFP, TVP).

38 CAPÍTULO 4. INTRODUÇÃO À CLASSIFICAÇÃO VIA REGRESSÃO LOGÍSTICA

Um classificador perfeito atingiria o ponto (0, 1), ou seja, sem falsos positivos e com todos os
verdadeiros positivos detectados. Na prática, quanto mais a curva ROC se aproxima do canto
superior esquerdo, melhor é o desempenho do classificador.

Uma métrica associada à curva ROC é a área sob a curva (AUC — Area Under the Curve).
O valor da AUC varia de 0 a 1:

• AUC = 1 indica um classificador perfeito;

• AUC = 0,5 corresponde a um classificador aleatório (linha diagonal);

• AUC < 0,5 sugere que o classificador está pior que o acaso (e poderia ser melhorado inver-
tendo as predições).

A curva ROC é especialmente útil quando queremos analisar o comportamento do classifica-
dor sob diferentes limiares, ou quando o custo dos erros de diferentes tipos não é simétrico. No
entanto, em contextos com classes desbalanceadas, a curva ROC pode ser menos informativa —
nesses casos, a curva precisão-recall costuma oferecer uma análise mais sensível.

Figura 4.1: Curva ROC

Exercício 9. Acesse esse site aqui e brinque com a simulação de escolha de corte para classificação.

Curva Precisão-Recall

A curva precisão-recall é outra ferramenta gráfica fundamental para avaliar classificadores biná-
rios, especialmente em cenários onde as classes estão desbalanceadas — ou seja, quando a classe
positiva é muito menos frequente que a negativa.

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=pt-br

4.4. AJUSTE DO LIMIAR DE DECISÃO 39

Enquanto a curva ROC mostra o trade-off entre sensibilidade (ou taxa de verdadeiros posi-
tivos) e a taxa de falsos positivos, a curva precisão-recall foca diretamente em duas métricas de
interesse: Precision e Recall.

Para construir a curva, variamos o limiar de decisão t ∈ [0, 1] usado para converter probabi-
lidades em classificações, e calculamos os pares (Recall, Precisão) correspondentes a cada valor
de t. Ao plotar esses pontos no plano, obtemos a curva precisão-recall.

Quanto mais a curva se aproxima do canto superior direito (alta precisão e alto recall), melhor
é o desempenho do classificador. A área sob a curva (PR AUC — Precision-Recall Area Under
Curve) pode ser usada como uma medida global de desempenho, assim como a AUC da curva
ROC.

Em cenários onde a classe positiva é rara, a curva ROC pode dar uma falsa sensação de bom
desempenho, pois o classificador pode ter uma taxa de falsos positivos muito baixa simplesmente
porque há poucos exemplos positivos para errar. Já a curva precisão-recall é mais sensível a esse
tipo de situação: ela penaliza mais severamente classificadores que não conseguem manter boa
precisão ao tentar capturar mais positivos.

Exercício 10. Rode o seguinte código e faça alterações para se familiarizar com a parte computacional.

https://github.com/thiagorr162/curso_aprendizado/blob/82a28464f529bc3b7141f304687b1fe500880710/notebooks/classificacao/metricas_desempenho.ipynb

40 CAPÍTULO 4. INTRODUÇÃO À CLASSIFICAÇÃO VIA REGRESSÃO LOGÍSTICA

Capítulo 5

KNN

5.1 KNN para classificação

Idealmente, gostaríamos sempre de prever respostas qualitativas usando o classificador de Bayes,
que é ótimo em termos teóricos. No entanto, na prática, não conhecemos a distribuição condici-
onal de Y dado X, o que torna impossível a construção direta do classificador de Bayes. Por isso,
ele é tratado como um padrão-ouro inatingível, servindo apenas como referência para avaliar
outros métodos.

Figura 5.1: KNN com k = 3.

Diversas abordagens tentam estimar a distribuição condicional de Y dado X, e classificam
uma nova observação atribuindo-a à classe com maior probabilidade estimada. Um método simples
e amplamente utilizado é o dos K-vizinhos mais próximos (KNN). Dado um valor de K e uma nova
observação x0, o KNN identifica os K pontos mais próximos de x0 no conjunto de treinamento.
Denotando esse subconjunto por N0, a probabilidade condicional da classe j é estimada como:

P (Y = j | X = x0) =
1
K ∑

i∈N0

I(yi = j).

Por fim, o KNN atribui à observação x0 a classe com a maior probabilidade estimada.

41

42 CAPÍTULO 5. KNN

Por exemplo, suponha que escolhemos K = 3, e que os três vizinhos mais próximos de x0

sejam dois da classe azul e um da laranja. A probabilidade estimada para a classe azul será 2/3,
e para a classe laranja, 1/3. Assim, o KNN classificará x0 como pertencente à classe azul. Ao
variar K, as fronteiras de decisão do classificador também mudam.

Apesar de ser uma abordagem bastante simples, o KNN pode gerar classificadores que se
aproximam surpreendentemente bem do classificador de Bayes. Por exemplo, em um conjunto
de dados simulado, com K = 10, o erro de teste do KNN foi de aproximadamente 0.1363, muito
próximo do erro de Bayes, que era 0.1304.

Figura 5.2: A curva preta representa a fronteira de decisão do classificador KNN, utilizando
K = 10. A fronteira de decisão de Bayes é indicada pela linha tracejada roxa. As duas fronteiras
são bastante semelhantes.

O valor de K influencia fortemente o desempenho do KNN. Quando K = 1, o modelo se torna
extremamente flexível, adaptando-se até aos ruídos dos dados – o que resulta em baixo viés,
mas alta variância. Já para valores muito grandes de K, o classificador se torna excessivamente
rígido, levando a uma maior taxa de erro devido ao viés elevado. Nesse cenário, os dados são
"suavizados"demais, ignorando padrões mais sutis.

Essa relação entre viés e variância se manifesta de forma clássica no gráfico de erro de teste
versus 1/K: à medida que K aumenta, a variância diminui e o viés cresce, formando uma curva
em formato de U. O ponto ideal de K é geralmente aquele que minimiza o erro de teste –
frequentemente em torno de K = 10.

Escolher corretamente o nível de flexibilidade (ou complexidade) do modelo é essencial tanto
em tarefas de regressão quanto de classificação.

Note que dado um ponto de teste x ∈ Rp, o algoritmo ingênuo compara esse ponto com
todos os pontos do conjunto de treinamento para calcular a resposta prevista. Isso resulta em
uma complexidade de O(np) por ponto de teste em Rp. Quando p é grande, esse custo se torna

5.1. KNN PARA CLASSIFICAÇÃO 43

Figura 5.3: A taxa de erro de treinamento do KNN (em azul, 200 observações) e a taxa de erro
de teste (em laranja, 5.000 observações) nos dados da Figura 2.13, à medida que o nível de
flexibilidade (avaliado por 1/K em escala log

elevado tanto em tempo quanto em memória. Existem técnicas de indexação para busca de vizi-
nhos mais próximos (possivelmente aproximadas), como as chamadas k-d trees, que apresentam
complexidade logarítmica em n (embora com tempo adicional de compilação) e uso de memória
que pode crescer exponencialmente com a dimensão.

Figura 5.4: Diagrama de Voronoi associado ao algoritmo KNN. Cada região representa o conjunto
de pontos que seriam classificados da mesma forma com base no vizinho mais próximo.

44 CAPÍTULO 5. KNN

5.2 KNN para regressão

O método de regressão KNN é bastante semelhante ao classificador KNN. Dado um valor de
K e um ponto de predição x0, a regressão KNN identifica as K observações de treinamento
mais próximas de x0, representadas por N0. Em seguida, estima f (x0) utilizando a média das
respostas correspondentes. Em outras palavras,

f̂ (x0) =
1
K ∑

xi∈N0

yi.

A figura abaixo ilustra dois ajustes do KNN sobre um conjunto de dados com p = 2 predi-
tores. O ajuste com K = 1 aparece no painel à esquerda, enquanto o painel da direita mostra o
ajuste com K = 9. Observa-se que, para K = 1, o KNN interpola perfeitamente as observações de
treinamento, resultando em um ajuste com descontinuidades abruptas. Para K = 9, o ajuste con-
tinua sendo uma função por partes, mas o uso da média sobre nove vizinhos suaviza as regiões
constantes, produzindo uma predição mais suave.

Figura 5.5: Knn para conjunto de 64 pontos. Do lado esquerdo K = 1 e do lado direito K = 9.

De modo geral, o valor ideal de K está ligado ao compromisso entre viés e variância. Um
valor pequeno de K resulta em um modelo altamente flexível, com baixo viés mas alta variância,
pois a predição em uma dada região depende fortemente de uma única observação. Já valores
maiores de K reduzem a variância, mas podem aumentar o viés.

5.3 O que é treinado no KNN?

Diferentemente de muitos algoritmos de aprendizado supervisionado, o K-Nearest Neighbors
(KNN) não realiza um processo explícito de treinamento no sentido tradicional de ajustar pa-
râmetros internos a partir dos dados. No KNN, o chamado treinamento consiste simplesmente
em armazenar o conjunto de dados de treino, ou seja, memorizar os pares (Xi, Yi).

Durante a fase de predição, dado um novo ponto X, o algoritmo identifica os K pontos mais
próximos entre os dados armazenados, com base em uma medida de distância (como a distância

5.4. REGRESSÃO LINEAR VS. KNN 45

Euclidiana). Em seguida, para tarefas de regressão, a predição é obtida calculando a média (ou
outro agregador) dos valores Yi correspondentes a esses vizinhos. Para tarefas de classificação, a
predição é feita atribuindo a classe mais frequente entre os vizinhos.

Assim, o KNN é considerado um método lazy learner, pois posterga todo o trabalho de gene-
ralização até o momento da predição, ao contrário de métodos como regressão linear ou redes
neurais, que constroem um modelo explícito durante o treinamento.

5.4 Regressão Linear vs. KNN

Em que situações a regressão linear — uma abordagem paramétrica — supera métodos não pa-
ramétricos como o KNN? A resposta é simples: uma abordagem paramétrica terá melhor desempenho
se sua forma funcional estiver próxima da verdadeira relação entre as variáveis.

A figura abaixo mostra um exemplo com dados gerados a partir de um modelo linear uni-
dimensional. As linhas pretas representam a função verdadeira f (X), enquanto as curvas azuis
indicam os ajustes feitos pelo KNN com K = 1 e K = 9. O ajuste com K = 1 é muito irregular,
enquanto o ajuste com K = 9 é bem mais suave e se aproxima melhor da função real.

Figura 5.6: Ajustes de f̂ (X) usando regressão KNN em um conjunto de dados unidimensional
com 50 observações. A relação verdadeira é representada pela linha preta contínua. Esquerda:
A curva azul corresponde a K = 1 e interpola os dados de treinamento, passando exatamente
pelos pontos. Direita: A curva azul corresponde a K = 9 e fornece um ajuste mais suave.

Como a relação subjacente é linear, é difícil para um método não paramétrico competir. A
flexibilidade extra do KNN aumenta a variância da predição, sem uma compensação no viés.
A linha azul tracejada na figura abaixo representa o ajuste feito por regressão linear — quase
perfeito nesse caso. O painel da direita da mesma figura mostra que a regressão linear supera
o KNN em termos de erro médio quadrático (MSE) de teste. A linha verde na figura representa
esse erro do KNN conforme o valor de 1/K. Os erros do KNN são consistentemente maiores
que os da regressão linear, exceto quando K é grande, situação em que o desempenho do KNN
se aproxima do da regressão linear. No entanto, com K pequeno, o KNN tem desempenho
significativamente pior.

46 CAPÍTULO 5. KNN

Figura 5.7: Esquerda: A linha tracejada azul representa o ajuste por mínimos quadrados. Como
f (X) é de fato linear (representada pela linha preta), a regressão linear fornece uma excelente
estimativa de f (X). Direita: A linha horizontal tracejada indica o erro quadrático médio (MSE)
de teste da regressão linear, enquanto a linha verde contínua mostra o MSE do KNN como função
de 1/K (em escala logarítmica). A regressão linear alcança um erro de teste menor que o KNN,
pois a relação é linear. No caso da regressão KNN, os melhores resultados ocorrem para valores
altos de K, o que corresponde a valores pequenos de 1/K.

Na prática, a relação entre X e Y raramente é exatamente linear. A figura abaixo explora o de-
sempenho da regressão linear e do KNN em situações com diferentes níveis de não-linearidade.
Quando a relação verdadeira é quase linear (linha superior), a regressão linear mantém o menor
erro de teste. Conforme a não-linearidade aumenta (linha inferior), o KNN supera substancial-
mente a regressão linear em todos os valores de K. Note que o MSE do KNN permanece estável,
enquanto o da regressão linear cresce significativamente. Esse comportamento ressalta que, em
contextos não lineares, métodos não paramétricos podem ser preferíveis.

5.4. REGRESSÃO LINEAR VS. KNN 47

Figura 5.8: Acima à esquerda: Em um cenário com relação levemente não linear entre X e Y
(linha preta contínua), são exibidos os ajustes do KNN com K = 1 (azul) e K = 9 (vermelho).
Acima à direita: Para esse caso levemente não linear, mostra-se o erro quadrático médio (MSE)
de teste para a regressão linear (linha preta horizontal) e para o KNN com diferentes valores de
1/K (linha verde). Abaixo à esquerda e à direita: Como no painel superior, mas considerando
agora uma relação fortemente não linear entre X e Y.

O exemplos anteriores mostram que o KNN tende a ter desempenho ligeiramente inferior
à regressão linear em relações lineares, mas muito superior quando a relação é não-linear. Em
situações reais, como geralmente não conhecemos a forma da relação verdadeira, o KNN pode
ser uma escolha segura: no pior caso, será apenas ligeiramente inferior à regressão linear, mas
pode superar substancialmente em casos não-lineares.

Exercício 11. Entender o código aqui.

Vale destacar que ambas as figuras consideram apenas o caso com p = 1 preditor. Em
dimensões mais altas, o KNN tende a ter desempenho pior que a regressão linear, devido
à maldição da dimensionalidade.

https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/knn/knn.ipynb

48 CAPÍTULO 5. KNN

Capítulo 6

Modelos baseados em árvores

Neste capítulo, descrevemos os métodos baseados em árvores para tarefas de regressão e clas-
sificação. Essas abordagens consistem em estratificar ou segmentar o espaço dos preditores em
um número reduzido de regiões simples. Para fazer uma predição em uma nova observação,
utilizamos geralmente a média (em regressão) ou a moda (em classificação) das respostas das
observações de treinamento que pertencem à mesma região. Como as regras de divisão utiliza-
das podem ser representadas na forma de uma árvore, essas abordagens são conhecidas como
métodos de árvore de decisão.

6.1 Árvores de decisão

Os métodos baseados em árvores são simples e de fácil interpretação. No entanto, muitas vezes
não alcançam o mesmo desempenho preditivo que os melhores métodos supervisionados. Por
isso, além das árvores de decisão, introduzimos também técnicas como bagging, florestas aleatórias,
boosting e Bayesian additive regression trees.

Essas técnicas envolvem a construção de múltiplas árvores que, em seguida, são combinadas
para gerar uma predição por consenso. Veremos que, embora a combinação de muitas árvores
possa resultar em ganhos expressivos de acurácia preditiva, isso costuma vir acompanhado de
uma redução na interpretabilidade do modelo.

O processo de construção de uma árvore de regressão pode ser dividido, grosseiramente, em
duas etapas:

1. Dividimos o espaço dos preditores — isto é, o conjunto de valores possíveis para X1, X2, . . . , Xp

— em J regiões distintas e não sobrepostas, R1, R2, . . . , RJ .

2. Para cada observação que cai em uma região Rj, fazemos a mesma predição, que consiste
simplesmente na média das respostas Yi associadas às observações de treino que pertencem
àquela região.

Por exemplo, suponha que, na Etapa 1, obtemos duas regiões, R1 e R2. Se a média das
respostas nas observações de treino de R1 é 10, e em R2 é 20, então para uma nova observação x:

49

50 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

Figura 6.1: Uma possível partição usando árvores

Ŷ =

10, se x ∈ R1,

20, se x ∈ R2.

Na prática, as regiões R1, . . . , RJ são escolhidas como retângulos de alta dimensão (chamados
boxes) por simplicidade e facilidade de interpretação. O objetivo é minimizar a soma dos erros
quadráticos (RSS):

J

∑
j=1

∑
i∈Rj

(yi − ŷRj)
2, (6.1)

onde ŷRj é a média das respostas das observações de treino em Rj.

6.1.1 Divisão Binária Recursiva

Como é computacionalmente inviável testar todas as possíveis partições, adotamos uma aborda-
gem gulosa (greedy) e de cima para baixo (top-down), conhecida como divisão binária recursiva.
A cada passo, escolhemos a melhor divisão possível naquele momento, sem necessariamente
garantir que seja a melhor árvore globalmente.

Para realizar a divisão binária recursiva, escolhemos um preditor Xj e um ponto de corte s
tal que a divisão do espaço dos preditores em duas regiões,

R1(j, s) = {X | Xj < s} e R2(j, s) = {X | Xj ≥ s},

6.1. ÁRVORES DE DECISÃO 51

gere a maior redução possível no erro quadrático (RSS). O objetivo é encontrar os valores de
j e s que minimizem:

∑
i:xi∈R1(j,s)

(yi − ŷR1)
2 + ∑

i:xi∈R2(j,s)
(yi − ŷR2)

2,

onde ŷR1 e ŷR2 são as médias das respostas nas regiões correspondentes.
Esse processo é feito de forma gulosa: a cada passo, procuramos a melhor divisão possível

localmente, sem considerar futuras divisões. Começamos com toda a base de dados como uma
única região e, a cada iteração, escolhemos a divisão que mais reduz o RSS. Ao invés de dividir
sempre o espaço completo, passamos a dividir uma das regiões existentes.

O processo continua até que algum critério de parada seja atingido, como por exemplo:
nenhuma região contendo mais que cinco observações.

Figura 6.2: Cima à esquerda: Uma partição do espaço bidimensional dos preditores que não
poderia ser obtida por divisão binária recursiva. Cima à direita: Resultado de uma divisão
binária recursiva em duas dimensões. Embaixo à esquerda: Árvore de decisão correspondente
à partição mostrada acima à direita. Embaixo à direita: Superfície de predição correspondente à
árvore, destacando os degraus definidos pelas regiões.

Uma vez criadas as regiões R1, . . . , RJ , a predição para uma nova observação é dada pela

52 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

média das respostas das observações de treinamento que pertencem à mesma região.

6.1.2 Poda de Árvores (Tree Pruning)

O processo de divisão recursiva pode produzir boas predições no conjunto de treinamento, mas
tende a sofrer com overfitting, levando a um mau desempenho no conjunto de teste. Isso ocorre
porque a árvore resultante pode ser complexa demais.

Uma árvore menor, com menos divisões (isto é, com menos regiões R1, . . . , RJ), pode ter
menor variância e interpretação mais simples, ao custo de um leve aumento de viés. Uma
alternativa ao crescimento total da árvore é interromper o processo quando a redução no RSS
(soma dos erros quadráticos) gerada por uma divisão não ultrapassar um certo limiar.

Uma abordagem mais eficaz é crescer uma árvore grande T0, e depois podá-la para obter uma
subárvore. A meta é selecionar a subárvore que leva ao menor erro de teste. Podemos estimar
esse erro usando validação cruzada ou um conjunto de validação.

No entanto, como o número de subárvores possíveis é muito grande, utilizamos o método
de poda por complexidade de custo (ou cost-complexity pruning, também chamado weakest link
pruning).

Definimos uma sequência de árvores indexadas por um parâmetro de ajuste α ≥ 0. Para cada
valor de α, escolhemos a subárvore T ⊆ T0 que minimiza:

|T|

∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)
2 + α|T|, (8.4)

onde:

• |T| é o número de nós terminais (ou regiões) da subárvore T,

• Rm é a região associada ao m-ésimo nó terminal,

• ŷRm é a média das respostas em Rm,

• α penaliza árvores mais complexas.

Quando α = 0, essa equação reduz-se ao erro de treinamento. À medida que α aumenta, a
penalização por complexidade aumenta, favorecendo árvores menores.

O aumento de α causa a poda sucessiva dos galhos da árvore T0, de forma aninhada e previ-
sível. Podemos então selecionar o melhor valor de α usando validação cruzada.

Uma vez escolhido α, a subárvore correspondente é então treinada no conjunto completo.

6.1. ÁRVORES DE DECISÃO 53

Algorithm 1 Construção de uma Árvore de Regressão com Poda
1: Use divisão binária recursiva para crescer uma árvore grande no conjunto de treino, parando

apenas quando cada nó terminal tiver menos que um número mínimo de observações.
2: Aplique a poda por complexidade de custo (cost complexity pruning) à árvore grande, gerando

uma sequência de subárvores ótimas em função de α.
3: Use validação cruzada com K blocos para escolher α:
4: for cada bloco k = 1, . . . , K do
5: (a) Repita os Passos 1 e 2 usando todos os dados exceto o k-ésimo bloco.
6: (b) Avalie o erro quadrático médio de predição no k-ésimo bloco, como função de α.
7: end for
8: Para cada valor de α, calcule o erro médio nos K blocos e selecione o α que minimiza esse

erro médio.
9: Retorne a subárvore do Passo 2 correspondente ao α escolhido.

Exercício 12. Alterar o código aqui para usar k-fold.

6.1.3 Árvores de Classificação

Uma árvore de classificação é muito parecida com uma árvore de regressão, com a diferença de
que ela é usada para prever uma resposta qualitativa em vez de uma quantitativa. Em uma
árvore de regressão, a resposta prevista para uma observação é a média das respostas Y das
observações de treinamento que pertencem ao mesmo nó terminal. Já no caso de uma árvore de
classificação, a previsão corresponde à classe mais frequente entre as observações de treinamento
do nó terminal. Além de determinar a classe predita para cada região terminal, também é comum
analisar as proporções das classes entre as observações de treinamento que caem em cada região.

O processo de construção de uma árvore de classificação é bastante similar ao utilizado em
árvores de regressão, baseando-se em divisões binárias recursivas. No entanto, como estamos
lidando com variáveis qualitativas, não podemos usar a soma de quadrados residual (RSS) como
critério para realizar as divisões. Uma alternativa natural ao RSS é a taxa de erro de classificação,
que mede a proporção de observações em uma região que não pertencem à classe mais frequente.
Formalmente, ela é dada por:

E = 1−max
k

p̂mk, (6.2)

onde p̂mk representa a proporção de observações de treinamento na região m que pertencem à
classe k.

Apesar de sua simplicidade, a taxa de erro de classificação não é suficientemente sensível
para orientar o crescimento da árvore de maneira eficiente. Por essa razão, outras duas métricas
são geralmente preferidas. A primeira é o índice de Gini, definido como:

G =
K

∑
k=1

p̂mk(1− p̂mk). (6.3)

O índice de Gini mede a variabilidade total entre as K classes. Ele assume valores baixos quando
as proporções p̂mk estão próximas de zero ou um, indicando que o nó é puro.

https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/arvores/poda.ipynb

54 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

Outra medida bastante utilizada é a entropia, que é dada por:

D = −
K

∑
k=1

p̂mk log p̂mk. (6.4)

Assim como o índice de Gini, a entropia também assume valores pequenos quando o nó é puro.
De fato, os valores numéricos do índice de Gini e da entropia costumam ser bastante próximos.

Na prática, ao construir uma árvore de classificação, costuma-se utilizar o índice de Gini ou
a entropia para avaliar a qualidade de uma divisão, já que essas métricas são mais sensíveis à
pureza dos nós do que a taxa de erro de classificação. Qualquer uma dessas três métricas pode
ser empregada no processo de poda da árvore. No entanto, quando o objetivo final é maximizar
a acurácia de predição da árvore final, a taxa de erro de classificação geralmente é preferida para
guiar a poda.

Cálculo prático de Gini e Entropia

Suponha que, em um nó m, existam 10 observações distribuídas entre duas classes: Classe 0 com
4 observações e Classe 1 com 6 observações. Assim, as proporções de cada classe são:

p̂m,0 =
4
10

= 0,4, p̂m,1 =
6

10
= 0,6.

O índice de Gini é definido por:

G =
K

∑
k=1

p̂mk(1− p̂mk).

Para este exemplo, temos:

G = (0,4)(1− 0,4) + (0,6)(1− 0,6) = 0,4× 0,6 + 0,6× 0,4 = 0,24 + 0,24 = 0,48.

A entropia é dada por:

D = −
K

∑
k=1

p̂mk log2 p̂mk.

Logo:

D = − (0,4 log2(0,4) + 0,6 log2(0,6)) .

Calculando os logaritmos:

log2(0,4) ≈ −1,3219, log2(0,6) ≈ −0,73697.

Portanto:

D = − (0,4× (−1,3219) + 0,6× (−0,73697)) = −(−0,52876− 0,44218) = 0,97094.

Como exemplo extremo, considere um nó puro com apenas observações da Classe 1. Neste
caso, temos:

p̂m,0 = 0, p̂m,1 = 1.

6.1. ÁRVORES DE DECISÃO 55

Assim, o índice de Gini será:

G = 0× (1− 0) + 1× (1− 1) = 0,

e a entropia será:
D = − (0× log(0) + 1× log(1)) = 0.

Na notação p̂mk, o índice m representa o nó terminal considerado e k indica a classe. Por
exemplo, p̂3,0 é a proporção de observações da classe 0 no nó 3.

Vamos fazer um exemplo completo. Considere o seguinte conjunto de dados:

X Classe
1 Azul
2 Vermelho
3 Azul
4 Vermelho
5 Azul

Suponha que realizamos um corte em X = 3,5.
Os dados ficam divididos da seguinte forma:

• Grupo à esquerda (X ≤ 3,5): observações {1, 2, 3}, contendo 2 Azuis e 1 Vermelho. A
proporção de Azuis é p = 2

3 , resultando em um índice de Gini:

Gesq = 1−
(

2
3

)2

−
(

1
3

)2

=
4
9
≈ 0,444.

• Grupo à direita (X > 3,5): observações {4, 5}, com 1 Azul e 1 Vermelho. A proporção de
Azuis é p = 1

2 , e o índice de Gini é:

Gdir = 1−
(

1
2

)2

−
(

1
2

)2

= 0,5.

O índice de Gini ponderado da divisão é:

G =
3
5
· 0,444 +

2
5
· 0,5 = 0,466.

Durante o crescimento da árvore, nosso objetivo é realizar divisões que minimizem o Gini ou
a entropia, já que valores baixos dessas métricas indicam maior pureza dos nós. Portanto, entre
todas as divisões possíveis, escolhe-se aquela que leva ao menor valor de Gini ou entropia nos
nós resultantes. Isso equivale a buscar o maior ganho de pureza após o corte.

Intuitivamente, o índice de Gini e a entropia são medidas da impureza de um nó. Ambas
indicam o quão misturadas estão as classes dentro do nó. Quando todas as observações no nó
pertencem à mesma classe, dizemos que o nó é puro, e tanto o Gini quanto a entropia valem
zero. À medida que a mistura entre as classes aumenta, os valores de Gini e entropia aumentam.
O índice de Gini pode ser interpretado como a probabilidade de uma classificação errada se

56 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

atribuirmos aleatoriamente uma classe a uma observação do nó, com base nas proporções das
classes. Já a entropia mede a quantidade de incerteza ou informação necessária para descrever a
classe de uma observação do nó. Nós com alta entropia têm alta incerteza, enquanto nós com
baixa entropia contêm observações predominantemente de uma única classe.

Considere uma variável aleatória Y que assume valores em um conjunto finito Y =

{y1, y2, . . . , yK}, com probabilidades associadas p1, p2, . . . , pK, onde pk = P(Y = yk) e

∑K
k=1 pk = 1. A entropia da distribuição de Y é dada por

H(Y) = −
K

∑
k=1

pk log2(pk).

A entropia mede o grau de incerteza ou imprevisibilidade da variável Y. Ela é pequena
quando uma classe domina, com probabilidade próxima de um, e é grande quando as
probabilidades são semelhantes entre as classes.
Agora mostramos que a entropia é maximizada quando todas as classes têm a mesma pro-
babilidade. Usamos a desigualdade de Jensen, lembrando que a função log2(x) é côncava.
Escrevendo a entropia como

H(Y) = E

[
log2

1
p(Y)

]
,

aplicamos Jensen com a variável aleatória Z = 1/p(Y), obtendo

H(Y) ≤ log2 E

[
1

p(Y)

]
.

A esperança E[1/p(Y)] pode ser escrita como

E

[
1

p(Y)

]
=

K

∑
k=1

pk ·
1
pk

=
K

∑
k=1

1 = K.

Portanto,
H(Y) ≤ log2 K.

A igualdade ocorre quando pk é constante para todos os k, ou seja, quando pk = 1/K. Isso
prova que a distribuição uniforme é a que maximiza a entropia.

6.1.4 Árvores versus modelos lineares

Árvores de regressão e classificação apresentam uma natureza bastante diferente em relação aos
métodos clássicos de regressão e classificação discutidos nos Capítulos 3 e 4. Por exemplo, a
regressão linear assume um modelo do tipo

f (X) = β0 +
p

∑
j=1

Xjβ j,

6.1. ÁRVORES DE DECISÃO 57

enquanto uma árvore de regressão assume um modelo da forma

f (X) =
M

∑
m=1

cm · 1(X∈Rm),

onde R1, . . . , RM representam uma partição do espaço de preditores.

Qual abordagem é melhor depende do problema. Se a relação entre as variáveis preditoras
e a resposta pode ser bem aproximada por um modelo linear, como na equação acima, méto-
dos como a regressão linear tendem a ter bom desempenho e podem superar uma árvore de
regressão, que não explora essa estrutura linear. No entanto, se a relação entre os preditores e a
resposta é altamente não-linear e complexa, como indicado pelo segundo modelo, as árvores de
decisão podem apresentar desempenho superior aos métodos lineares.

Um exemplo ilustrativo é apresentado na Figura abaixo. No primeiro caso, a fronteira de
decisão real é linear. O modelo linear (painel superior esquerdo) supera a árvore de decisão
(painel superior direito), que realiza cortes paralelos aos eixos. No segundo caso, a fronteira
de decisão verdadeira é não-linear. O modelo linear falha em capturar a fronteira real (painel
inferior esquerdo), enquanto a árvore de decisão consegue uma boa separação (painel inferior
direito).

É importante observar que outros fatores além do erro de teste também podem influenciar a
escolha de um método de aprendizado estatístico. Em algumas situações, a interpretabilidade e
a facilidade de visualização podem tornar as árvores uma escolha preferida, mesmo que o erro
de predição não seja o menor possível.

58 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

6.1.5 Vantagens e Desvantagens das Árvores

Árvores de decisão, tanto para regressão quanto para classificação, possuem diversas vantagens
em relação aos métodos clássicos discutidos anteriormente.

• Árvores de decisão são, em geral, muito fáceis de explicar e interpretar. Muitas vezes, elas
são ainda mais intuitivas do que modelos lineares. Alguns autores sugerem que as árvores
refletem melhor o modo como as pessoas tomam decisões em situações práticas.

• Além disso, podem ser representadas graficamente, o que torna sua interpretação acessível
mesmo para não especialistas, especialmente quando as árvores são pequenas.

• Árvores também lidam de forma natural com preditores qualitativos, sem exigir a criação
de variáveis indicadoras (dummies).

• No entanto, as árvores frequentemente não atingem o mesmo nível de acurácia preditiva
que outros métodos de regressão e classificação mais sofisticados.

• Outra limitação importante é a instabilidade: pequenas alterações nos dados podem levar
a mudanças significativas na estrutura da árvore estimada.

Uma forma de superar essas limitações é combinar muitas árvores de decisão usando mé-
todos como Bagging e Florestas aleatórias. Esses métodos serão apresentados na próxima seção e
podem melhorar substancialmente o desempenho preditivo das árvores.

6.2 Bagging

As árvores de decisão discutidas anteriormente sofrem de alta variância. Isso significa que, se
dividirmos o conjunto de treinamento em duas partes aleatórias e ajustarmos uma árvore de
decisão em cada parte, os resultados obtidos podem ser bastante diferentes. Por outro lado,
procedimentos com baixa variância produzem resultados semelhantes quando aplicados repeti-
damente a diferentes conjuntos de dados. A regressão linear, por exemplo, tende a apresentar
baixa variância, especialmente quando a razão entre n e p é moderadamente grande.

Bootstrap aggregation, ou bagging, é um procedimento geral para reduzir a variância de um
método de aprendizado estatístico. Essa técnica é particularmente útil no contexto de árvores de
decisão.

Lembre que, para um conjunto de n observações independentes Z1, . . . , Zn, cada uma com
variância σ2, a variância da média Z das observações é dada por σ2/n. Ou seja, a média de
várias observações reduz a variância.

Inspirado por esse princípio, uma maneira natural de reduzir a variância e aumentar a acu-
rácia de teste é gerar muitos subconjuntos de treinamento, ajustar um modelo preditivo em cada
um e então calcular a média das previsões. Se denotarmos as previsões como f̂ 1(x), f̂ 2(x), . . . , f̂ B(x),
a previsão agregada é:

f̂avg(x) =
1
B

B

∑
b=1

f̂ b(x).

6.2. BAGGING 59

Na prática, não temos acesso a múltiplos conjuntos de treinamento independentes. Em vez
disso, usamos o bootstrap, gerando B conjuntos de treinamento bootstrap amostrados com reposi-
ção do conjunto original. Ajustamos o modelo em cada conjunto para obter f̂ ∗b(x) e, finalmente,
calculamos a média:

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x).

Esse procedimento é chamado de bagging.
Ao aplicar o bagging em árvores de regressão, construímos B árvores em conjuntos de treina-

mento bootstrap e combinamos as previsões. Essas árvores são crescidas profundamente e não
são podadas. Portanto, cada árvore individual tem alta variância e baixo viés. Ao combinar as
árvores, a variância é reduzida substancialmente, enquanto o viés permanece baixo. Assim:

O bagging reduz a variância sem aumentar significativamente o viés.

Para problemas de classificação, a extensão é direta. Para cada observação de teste, registra-
mos a classe predita por cada uma das B árvores e usamos o voto majoritário para determinar a
classe final.

Além da intuição básica, podemos obter uma fórmula explícita para a variância da predi-
ção agregada. Suponha que cada árvore f̂ b(x) tenha variância σ2, e que a correlação entre as
predições de duas árvores quaisquer seja ρ. Então, a variância da média das árvores é:

Var
(

f̂bag(x)
)
= ρσ2 +

(1− ρ)σ2

B
.

Para valores grandes de B, o segundo termo se aproxima de zero e a variância total se reduz a
ρσ2.

Isso mostra que o bagging reduz a variância, mas a redução depende da correlação ρ entre as
árvores. Quanto menor a correlação, maior será a redução de variância ao aplicar o bagging.

Essa ideia não é restrita a árvores de decisão. Em princípio, qualquer modelo com alta
variância pode se beneficiar do bagging. No entanto, árvores de decisão são especialmente
adequadas porque têm baixo viés e alta variância, características que tornam possível reduzir a
variância sem sacrificar a acurácia. Além disso, no contexto de florestas aleatórias e bagging de
árvores, costuma-se crescer as árvores até a pureza máxima dos nós. Isso aumenta ainda mais
a variância individual das árvores e, consequentemente, o potencial de redução de variância ao
aplicar o bagging.

6.2.1 Estimativa do Erro Out-of-Bag (OOB)

Existe uma maneira bastante simples de estimar o erro de teste de um modelo bagged, sem preci-
sar realizar validação cruzada ou utilizar um conjunto de validação separado. O ponto chave do
bagging é que cada árvore é ajustada usando subconjuntos bootstrap das observações originais.
Em média, cada árvore usa aproximadamente dois terços das observações para treinamento. O
restante, cerca de um terço, não é utilizado naquela árvore específica e essas observações são
chamadas de out-of-bag (OOB).

60 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

Essa proporção de aproximadamente um terço pode ser calculada da seguinte forma. Cada
árvore do bagging é ajustada com um conjunto bootstrap, onde n observações são amostradas
com reposição a partir das n observações originais. Para uma observação específica i, a probabi-
lidade de ela não ser escolhida em uma única amostragem é

1− 1
n

.

Como n amostras são feitas para formar o conjunto bootstrap, a probabilidade de que i nunca
seja selecionada é

(
1− 1

n

)n

.

Quando n é grande, podemos usar a aproximação

(
1− 1

n

)n

≈ e−1 ≈ 0,368.

Portanto, cerca de 36,8% das observações não são usadas no ajuste de uma árvore específica e
ficam como OOB para essa árvore.

Para estimar o erro OOB, consideramos a predição para a i-ésima observação utilizando ape-
nas as árvores nas quais essa observação foi OOB, ou seja, não foi usada no treinamento daquela
árvore. Em média, cada observação será OOB para aproximadamente 0,368× B árvores, onde B
é o número total de árvores do ensemble. Para cada observação, podemos então calcular a pre-
dição média (no caso de regressão) ou aplicar uma votação majoritária (no caso de classificação),
usando apenas essas árvores.

Esse processo leva a uma predição OOB única para cada observação. Repetindo para todas
as n observações do conjunto de dados, podemos calcular o erro quadrático médio OOB (para
regressão) ou a taxa de erro OOB (para classificação).

O erro OOB fornece uma estimativa válida do erro de teste do modelo bagged, pois as pre-
dições são feitas apenas com árvores que não usaram a observação correspondente em seu trei-
namento. Quando B é suficientemente grande, o erro OOB torna-se praticamente equivalente ao
erro estimado por validação cruzada leave-one-out. Isso torna o OOB uma alternativa conveniente
e computacionalmente eficiente para estimar o erro de teste, especialmente em grandes conjuntos
de dados onde a validação cruzada seria onerosa.

6.3. RANDOM FORESTS 61

Algorithm 2 Cálculo do erro Out-of-Bag (OOB)
1: Dado um conjunto de treinamento com n observações e um número de árvores B
2: for b = 1 até B do
3: Sorteie um conjunto bootstrap com n observações (com reposição)
4: Ajuste uma árvore f̂ ∗b usando o conjunto bootstrap
5: Registre quais observações não foram usadas na árvore b (estas serão OOB para a árvore

b)
6: end for
7: for cada observação i = 1 até n do
8: Identifique todas as árvores onde i foi OOB
9: if há pelo menos uma árvore OOB para i then

10: Preveja ŷOOB
i usando as árvores onde i foi OOB

11: end if
12: end for
13: Compare ŷOOB

i com yi verdadeiro e calcule o erro médio

6.2.2 Importância de Variáveis em Modelos Bagged

Como discutido anteriormente, o uso do bagging normalmente resulta em melhoria na acurácia
de predição quando comparado ao uso de uma única árvore. No entanto, essa melhoria ge-
ralmente ocorre às custas da interpretabilidade do modelo. Uma das vantagens fundamentais
das árvores de decisão é sua fácil visualização e a possibilidade de identificar diretamente quais
variáveis são mais importantes. Quando combinamos muitas árvores — como no bagging —
torna-se impraticável representar visualmente o modelo final ou identificar facilmente as variá-
veis mais relevantes.

Apesar dessa limitação, é possível obter uma medida global da importância das variáveis em
ensembles. Para árvores de regressão, calcula-se a redução total no RSS (soma dos quadrados
dos resíduos) atribuída a divisões feitas por cada variável, somando essa quantidade sobre todas
as B árvores do ensemble. No caso de árvores de classificação, soma-se a redução no índice de
Gini associada a cortes que usam cada variável. Variáveis que resultam em maiores reduções
acumuladas são consideradas mais importantes no processo de decisão.

6.3 Random Forests

As random forests representam uma extensão do bagging que busca reduzir a correlação entre as
árvores, um problema que ocorre naturalmente quando todas as árvores podem escolher livre-
mente entre todas as variáveis disponíveis. No bagging puro, as árvores tendem a usar repetida-
mente as variáveis mais fortes, levando a árvores altamente correlacionadas e, consequentemente,
limitando a redução de variância do ensemble. Para mitigar esse problema, as random forests
introduzem uma modificação simples, porém eficaz: a cada divisão de uma árvore, um sub-
conjunto aleatório de m variáveis é selecionado entre as p variáveis disponíveis, e apenas essas
podem ser usadas no corte.

62 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

Essa estratégia força diferentes árvores a considerar diferentes variáveis em suas divisões
iniciais, promovendo diversidade entre as árvores e reduzindo a correlação entre elas. Normal-
mente, o número de variáveis candidatas m é escolhido como m ≈ √p, embora outros valores
possam ser usados dependendo do problema.

A principal diferença entre bagging e random forests reside justamente nessa escolha do
tamanho do subconjunto de variáveis em cada divisão. Quando m = p, a random forest se
reduz ao bagging. Para valores menores de m, as árvores são forçadas a explorar combinações
diferentes de variáveis, o que aumenta a diversidade do ensemble e reduz a variância da predição
final. Contudo, se m for muito pequeno, isso pode levar a um aumento do viés, já que as árvores
podem deixar de considerar variáveis relevantes em divisões cruciais.

6.3.1 Impacto dos Parâmetros B e m

O número de árvores B no ensemble controla a quantidade de modelos combinados. Aumentar B
tende a reduzir a variância da predição final, sem aumentar o viés. Já o parâmetro m, que deter-
mina o número de variáveis candidatas em cada divisão, regula a decorrelação entre as árvores.
Valores menores de m incentivam uma maior diversidade entre as árvores, promovendo redução
da variância, especialmente em conjuntos de dados com variáveis altamente correlacionadas. No
entanto, uma escolha de m muito pequena pode elevar o viés do modelo.

6.3. RANDOM FORESTS 63

6.3.2 Uso de Random Forests em Altas Dimensões

O uso de random forests é especialmente benéfico em situações de alta dimensionalidade, isto
é, quando o número de preditores p é grande em relação ao número de observações n. Nesses
cenários, é comum que muitas variáveis sejam irrelevantes ou altamente correlacionadas. A
estratégia de seleção aleatória de variáveis em cada divisão ajuda a evitar que todas as árvores
concentrem suas divisões nas mesmas variáveis dominantes, forçando o modelo a considerar
uma gama mais ampla de preditores. Isso aumenta a diversidade entre as árvores e melhora a
capacidade de generalização do ensemble.

Além disso, random forests lidam bem com problemas onde p > n, como em dados genô-
micos, imagens ou texto, e conseguem tolerar a presença de muitas variáveis ruidosas ou não
informativas. Outra vantagem prática é que o método geralmente não requer uma etapa prévia
de seleção de variáveis, pois o processo de amostragem aleatória e a própria métrica de impor-
tância de variáveis ajudam a mitigar o impacto de preditores irrelevantes.

Exercício 13. Entender os códigos aqui.

https://github.com/thiagorr162/curso_aprendizado/tree/main/notebooks/arvores

64 CAPÍTULO 6. MODELOS BASEADOS EM ÁRVORES

Capítulo 7

Seleção de modelos lineares e
regularização

No contexto de regressão, o modelo linear padrão é dado por:

Y = β0 + β1X1 + · · ·+ βpXp + ϵ,

onde Y é a variável resposta, X1, . . . , Xp são as variáveis preditoras, e ϵ representa o erro aleatório.
Esse modelo é normalmente ajustado via mínimos quadrados. Apesar de sua simplicidade,

o modelo linear apresenta vantagens importantes, especialmente em termos de inferência e in-
terpretabilidade. Em muitos problemas reais, ele é surpreendentemente competitivo mesmo
quando comparado a modelos não-lineares mais complexos.

Existem dois principais motivos para substituir o ajuste por mínimos quadrados por outros
procedimentos:

• Performance Preditiva. Quando a relação entre resposta e preditores é aproximadamente
linear, o ajuste por mínimos quadrados resulta em estimadores com viés baixo. Se o número
de observações n for muito maior do que o número de variáveis p, ou seja, n ≫ p, os esti-
madores também apresentam baixa variância, o que tende a resultar em boa performance
em dados de teste.

Entretanto, se n não for muito maior do que p, a variância dos coeficientes aumenta sig-
nificativamente, levando a overfitting e má generalização. No caso em que p > n, não
existe solução única para os coeficientes que minimizam os erros quadráticos: há infinitas
soluções possíveis.

Cada uma dessas soluções resulta em erro zero nos dados de treino, mas em geral apre-
sentam alto erro nos dados de teste devido à alta variância. Ao restringir ou encolher os
coeficientes estimados, conseguimos reduzir substancialmente a variância, com aumento
de viés geralmente desprezível — o que melhora a performance preditiva em dados não
vistos.

• Interpretabilidade do Modelo. É comum que, em uma regressão com múltiplos predito-
res, algumas variáveis não estejam realmente associadas à resposta. Incluir essas variáveis
irrelevantes aumenta a complexidade do modelo e dificulta sua interpretação.

65

66 CAPÍTULO 7. SELEÇÃO DE MODELOS LINEARES E REGULARIZAÇÃO

Ao remover essas variáveis — por exemplo, forçando os coeficientes correspondentes a
serem zero — obtemos um modelo mais simples e fácil de interpretar. Note que o

Existem muitas alternativas, clássicas e modernas, ao uso de mínimos quadrados para ajustar
o modelo linear. Neste capítulo, são discutidas duas alternativas:

• Seleção de Subconjuntos (Subset Selection): envolve identificar um subconjunto das p
variáveis que acreditamos estarem associadas à resposta. Ajusta-se o modelo linear por
mínimos quadrados usando apenas essas variáveis selecionadas.

• Encolhimento (Shrinkage): ajusta-se um modelo utilizando todas as p variáveis, mas os
coeficientes são encolhidos em direção a zero. Esse encolhimento, também chamado de
regularização, reduz a variância do modelo. Em alguns casos, os coeficientes podem até ser
forçados a zero, o que permite realizar seleção de variáveis implicitamente.

7.1 Seleção do melhor subconjunto (Best Subset Selection)

A seleção do melhor subconjunto consiste em ajustar modelos de regressão para todas as com-
binações possíveis de subconjuntos das p variáveis preditoras. Por exemplo, ajustamos todos os
modelos com uma variável, depois com duas, e assim por diante até o modelo com todas as p
variáveis. Para cada tamanho de subconjunto k, comparamos todos os modelos de tamanho k
e selecionamos aquele com melhor desempenho nos dados de treinamento, geralmente o que
possui menor erro residual quadrático (RSS). Em seguida, entre os modelos de tamanhos dife-
rentes, escolhemos aquele que apresenta melhor desempenho preditivo, avaliando-o em dados
de validação ou usando critérios como Cp, AIC, BIC ou R2 ajustado. O procedimento pode ser
descrito da seguinte forma:

Algorithm 3 Best Subset Selection
1: DefinaM0 como o modelo nulo, sem preditores, que prediz a média da amostra.
2: for k = 1, 2, . . . , p do
3: Ajuste todos os (p

k) modelos com exatamente k preditores.
4: Escolha o melhor modeloMk dentre esses, com base no menor Erro Quadrático ou maior

R2.
5: end for
6: Escolha o melhor modelo dentreM0,M1, . . . ,Mp com base em:

• erro em um conjunto de validação;

• ou validação cruzada.

Uma dificuldade importante desse método está no fato de que RSS e R2 tendem a melhorar
conforme adicionamos mais variáveis, o que favorece modelos mais complexos e com maior
risco de sobreajuste. Por isso, é essencial usar critérios que penalizam a complexidade ou avaliar
diretamente o erro de teste, via validação cruzada ou conjunto de validação separado.

Apesar de sua simplicidade conceitual, a seleção do melhor subconjunto enfrenta sérias li-
mitações computacionais. O número de modelos possíveis cresce exponencialmente com p, já

7.1. SELEÇÃO DO MELHOR SUBCONJUNTO (BEST SUBSET SELECTION) 67

que existem 2p subconjuntos. Por exemplo, com p = 10, há cerca de mil modelos possíveis;
com p = 20, mais de um milhão; e com p = 40, torna-se praticamente inviável testar todas as
possibilidades, mesmo com computadores modernos.

Vale destacar que o procedimento pode ser estendido para modelos não paramétricos. A
seleção dos modelos pode ser guiada por medidas como o erro de validação ou crité-
rios baseados em perda preditiva empírica, calculados em conjuntos de validação ou via
validação cruzada. O desempenho de cada subconjunto de variáveis pode ser avaliado
com base na capacidade preditiva do modelo ajustado de forma não paramétrica, como
estimadores por k-vizinhos mais próximos, árvores de decisão, ou métodos kernel.

7.1.1 Seleção Foward e Backward

Por razões computacionais, a seleção do melhor subconjunto torna-se inviável para valores gran-
des de p. Além disso, um espaço de busca muito amplo pode levar à seleção de modelos com
ótimo desempenho nos dados de treino, mas que não generalizam bem. Isso ocorre porque,
quanto mais modelos avaliamos, maior a chance de encontrar um que se ajusta bem ao acaso.
Assim, métodos que restringem o espaço de busca, como a seleção stepwise, oferecem uma alter-
nativa prática e eficiente.

A seleção stepwise explora um número bem menor de modelos do que a busca exaustiva.
Um exemplo comum é a seleção stepwise para frente (forward stepwise selection). Nesse
procedimento, começamos com o modelo nulo, que não contém nenhuma variável preditora.
Em cada etapa, adicionamos à equação a variável que proporciona a maior melhora no ajuste,
medida por critérios como R2 ou RSS. Esse processo se repete até que todas as variáveis estejam
no modelo, ou até um critério de parada ser atingido.

A seguir, descrevemos formalmente o procedimento:

Algorithm 4 Forward Stepwise Selection
1: Comece com o modelo nuloM0

2: for k = 0, 1, . . . , p− 1 do
3: Considere os p− k modelos que adicionam uma nova variável ao modeloMk

4: Escolha o modeloMk+1 que oferece a maior melhoria no ajuste (menor RSS ou maior R2)
5: end for
6: Ao final, escolha o melhor modelo entre M0, . . . ,Mp com base em erro de validação, AIC,

BIC, R2 ajustado ou validação cruzada

Comparado à seleção exaustiva, que requer ajustar 2p modelos, a seleção forward requer bem
menos ajustes. Especificamente, no passo k, consideramos p− k modelos, resultando em um total
de:

1 +
p−1

∑
k=0

(p− k) = 1 +
p(p + 1)

2

68 CAPÍTULO 7. SELEÇÃO DE MODELOS LINEARES E REGULARIZAÇÃO

modelos avaliados. Por exemplo, com p = 20, a seleção exaustiva requer mais de um milhão
de ajustes, enquanto a stepwise requer apenas 211.

Apesar da grande vantagem computacional, a seleção stepwise não garante encontrar o me-
lhor modelo possível. Isso ocorre porque decisões tomadas em etapas anteriores afetam as opções
disponíveis nas próximas. Por exemplo, suponha que o melhor modelo com uma variável inclua
X1, mas o melhor modelo com duas variáveis inclua X2 e X3. Como o método já adicionou X1 na
primeira etapa, o modelo com duas variáveis será forçado a incluir X1, podendo assim descartar
a melhor combinação possível de duas variáveis. Portanto, o método pode falhar em encontrar o
melhor subconjunto global de variáveis.

Ainda assim, na prática, a seleção stepwise costuma apresentar bom desempenho e é uma al-
ternativa útil quando o número de variáveis é grande demais para permitir uma busca exaustiva.

Assim como a seleção stepwise para frente, a seleção stepwise para trás (backward stepwise se-
lection) é uma alternativa eficiente à seleção do melhor subconjunto. No entanto, ao contrário
do método forward, que começa com nenhum preditor e adiciona variáveis uma a uma, o mé-
todo backward começa com o modelo completo (contendo todas as p variáveis) e vai removendo
iterativamente as variáveis menos úteis, uma por vez.

A cada etapa, entre todos os modelos que removem uma variável do modelo atual, escolhe-se
aquele com melhor ajuste — tipicamente o de menor erro residual quadrático (RSS) ou maior
R2. O processo continua até restar apenas o modelo nulo, que não inclui nenhum preditor. O
algoritmo é descrito a seguir:

Algorithm 5 Backward Stepwise Selection
1: DefinaMp como o modelo completo, contendo todos os p preditores
2: for k = p, p− 1, . . . , 1 do
3: Considere os k modelos que removem uma das variáveis deMk, resultando em modelos

com k− 1 variáveis
4: Escolha o melhor entre esses modelos e denote-o porMk−1

5: end for
6: Escolha o melhor modelo final entreM0, . . . ,Mp, com base em erro de validação, AIC, BIC,

R2 ajustado ou validação cruzada

Assim como o método forward, a seleção backward avalia um número total de modelos igual
a 1 + p(p+1)

2 , o que é muito menor que os 2p modelos da seleção exaustiva. Isso permite aplicar
o método backward mesmo quando p é grande demais para a busca completa.

Uma limitação importante, porém, é que a seleção backward só pode ser usada quando o
número de observações n é maior do que o número de variáveis p, pois o modelo inicial completo
precisa ser ajustável. Já o método forward pode ser aplicado mesmo quando p > n, sendo útil
em contextos de alta dimensionalidade.

É importante lembrar que, assim como o forward, o backward também não garante encontrar
o melhor subconjunto global de variáveis. O caminho de remoções escolhidas influencia o resul-
tado final, e o método pode ignorar subconjuntos que oferecem ajuste superior por não estarem
em sua trajetória de busca.

7.1. SELEÇÃO DO MELHOR SUBCONJUNTO (BEST SUBSET SELECTION) 69

Exemplo: Seleção de Variáveis com Modelos Não Paramétricos no Python

A seguir, mostramos como aplicar a seleção sequencial de variáveis usando um classificador
não paramétrico, o k-Nearest Neighbors (kNN), com o dataset clássico iris. Usamos a classe
SequentialFeatureSelector da biblioteca scikit-learn:

from sklearn.feature_selection import SequentialFeatureSelector

from sklearn.neighbors import KNeighborsClassifier

from sklearn.datasets import load_iris

Primeiro, carregamos os dados:

X, y = load_iris(return_X_y=True)

Aqui, X representa as variáveis preditoras e y representa a variável de resposta (as espécies
das flores). Em seguida, definimos o estimador k-NN com 3 vizinhos:

knn = KNeighborsClassifier(n_neighbors=3)

Criamos o seletor sequencial, especificando que queremos selecionar 3 variáveis:

sfs = SequentialFeatureSelector(knn, n_features_to_select=3)

Ajustamos o seletor aos dados:

sfs.fit(X, y)

Após o ajuste, podemos verificar quais variáveis foram selecionadas com:

sfs.get_support()

Saída: array([True, False, True, True])

A saída indica que as colunas 0, 2 e 3 foram selecionadas (valores True), enquanto a coluna
1 foi descartada. Podemos transformar o conjunto original X para conter apenas as colunas
selecionadas:

sfs.transform(X).shape

Saída: (150, 3)

O novo conjunto de dados contém 150 amostras e apenas 3 variáveis, conforme especificado.
Este exemplo mostra como técnicas de seleção de variáveis podem ser usadas com modelos não
paramétricos de forma prática e eficiente, utilizando validação interna para guiar a escolha das
melhores combinações de preditores.

70 CAPÍTULO 7. SELEÇÃO DE MODELOS LINEARES E REGULARIZAÇÃO

Comparação de Modelos com Seleção de Variáveis em Pipeline

A seguir, descrevemos um procedimento completo para comparar três modelos de classificação
— Regressão Logística, k-Nearest Neighbors (kNN) e Floresta Aleatória — utilizando uma etapa
de seleção de variáveis incorporada ao pipeline. A comparação é feita com base no desempenho
de validação, e o melhor modelo é então avaliado no conjunto de teste.

1. Importação das bibliotecas e carregamento dos dados.
Utilizamos o conjunto de dados iris, que já está disponível no scikit-learn, e dividimos
em três partes: treino, validação e teste.

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

from sklearn.feature_selection import SequentialFeatureSelector

from sklearn.linear_model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

import numpy as np

X, y = load_iris(return_X_y=True)

60% treino, 20% validação, 20% teste

X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=0)

2. Definição dos modelos a serem comparados.
Criamos um dicionário com os três classificadores que desejamos comparar. Eles serão
usados dentro dos pipelines com seleção de variáveis.

models = {

"Regressão Logística": LogisticRegression(max_iter=1000),

"kNN": KNeighborsClassifier(n_neighbors=3),

"Floresta Aleatória": RandomForestClassifier(random_state=0)

}

3. Criação dos pipelines com seleção sequencial de variáveis.
Para cada modelo, criamos um Pipeline que inclui primeiro a seleção de 3 variáveis com
SequentialFeatureSelector, e depois o classificador.

7.1. SELEÇÃO DO MELHOR SUBCONJUNTO (BEST SUBSET SELECTION) 71

pipelines = {

name: Pipeline([

(’select’, SequentialFeatureSelector(model, n_features_to_select=3)),

(’clf’, model)

])

for name, model in models.items()

}

4. Treinamento e avaliação de cada pipeline no conjunto de validação.
Cada pipeline é ajustado usando apenas os dados de treino. Em seguida, fazemos predições
no conjunto de validação e calculamos a acurácia.

for name, pipe in pipelines.items():

pipe.fit(X_train, y_train)

y_pred = pipe.predict(X_val)

acc = accuracy_score(y_val, y_pred)

print(f"{name}: Acurácia na validação = {acc:.3f}")

5. Escolha do melhor modelo e avaliação no conjunto de teste.
Após identificar o modelo com melhor desempenho na validação, reagrupamos os dados
de treino e validação para refazer o ajuste final. Em seguida, avaliamos o desempenho final
no conjunto de teste.

Exemplo: suponha que a Regressão Logística teve melhor desempenho

best_pipe = pipelines["Regressão Logística"]

Avaliamos no teste

y_test_pred = best_pipe.predict(X_test)

print("Acurácia final no teste:", accuracy_score(y_test, y_test_pred))

Esse processo garante uma comparação justa entre modelos, pois a seleção de variáveis é feita
internamente em cada pipeline, evitando o uso indevido de dados de validação. Além disso, ao
separar os conjuntos de dados, conseguimos avaliar corretamente a capacidade de generalização
dos modelos.

72 CAPÍTULO 7. SELEÇÃO DE MODELOS LINEARES E REGULARIZAÇÃO

7.2 Ridge e Lasso

7.2.1 Regressão Ridge (Ridge Regression)

A regressão ridge é uma técnica de regularização que busca ajustar todos os p preditores, mas
penalizando coeficientes grandes, o que ajuda a reduzir a variância do modelo.

Lembre que, na regressão linear comum, os coeficientes β = (β1, . . . , βp) são obtidos minimi-
zando a soma dos erros quadráticos (RSS):

RSS =
n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

.

Na regressão ridge, em vez disso, minimizamos a seguinte função de custo:

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

β2
j ,

onde λ ≥ 0 é o parâmetro de regularização, que controla a força da penalização. O segundo
termo, chamado penalidade de encolhimento (shrinkage penalty), impõe uma penalização a coeficien-
tes grandes e força os valores de β j a se aproximarem de zero.

Em notação matricial, assumindo que os dados foram centrados (isto é, sem intercepto β0), a
função a ser minimizada pode ser escrita como:

β̂
Ridge

= arg min
β

{
∥Y − Xβ∥2

2 + λ∥β∥2
2
}

,

onde:

• X ∈ Rn×p é a matriz de design;

• Y ∈ Rn é o vetor resposta;

• β ∈ Rp é o vetor de coeficientes;

• ∥ · ∥2 denota a norma Euclidiana (ou ℓ2-norma).

Essa formulação mostra claramente que o objetivo é encontrar um vetor de coeficientes que,
além de se ajustar bem aos dados (minimizando o erro), tenha norma pequena, evitando coefici-
entes muito grandes.

O parâmetro λ precisa ser ajustado separadamente, geralmente via validação cruzada. Quando
λ = 0, obtemos o modelo de mínimos quadrados ordinários (OLS). À medida que λ→ ∞, todos
os coeficientes tendem a zero.

A solução do problema de Ridge é dada minimizando:

J(β) = ∥Y − Xβ∥2 + λ∥β∥2

Derivando e igualando a zero:

∇J = −2X⊤Y + 2(X⊤X + λI)β = 0⇒ β̂ = (X⊤X + λI)−1X⊤Y

7.2. RIDGE E LASSO 73

A matriz X⊤X + λI é sempre invertível para λ > 0, mesmo que X⊤X seja singular. De fato,
seja A = X⊤X + λI, com λ > 0. Queremos mostrar que A é invertível e para isso, vamos mostrar
que A é definida positiva.

Para todo v ̸= 0:

v⊤Av = v⊤X⊤Xv + λv⊤v = ∥Xv∥2 + λ∥v∥2

Como λ > 0 e ∥v∥2 > 0, então v⊤Av > 0. Logo, A é definida positiva e, portanto, invertível.

7.2.2 Regressão Lasso

A regressão Lasso (Least Absolute Shrinkage and Selection Operator) é uma alternativa à regressão
ridge que realiza regularização com norma ℓ1. Ela busca minimizar:

β̂
Lasso

= arg min
β

{
∥Y − Xβ∥2 + λ∥β∥1

}
, onde ∥β∥1 =

p

∑
j=1
|β j|

Comparando com ridge, a diferença é que a penalização com norma ℓ2 (quadrado dos coefi-
cientes) foi substituída pela norma ℓ1. Essa troca faz com que o Lasso produza soluções esparsas
— ou seja, com muitos coeficientes exatamente iguais a zero — promovendo assim seleção de
variáveis automaticamente.

Ao contrário do ridge, o Lasso não possui solução fechada. Isso ocorre porque a função de
custo não é diferenciável em pontos onde β j = 0 (devido ao valor absoluto). Portanto, a solução
é obtida por métodos numéricos como:

• Coordinate descent (descida por coordenadas): método iterativo que otimiza um coefici-
ente por vez, mantendo os outros fixos.

• Least Angle Regression (LARS): técnica eficiente que gera o caminho completo de soluções
à medida que λ varia.

Enquanto ridge encolhe todos os coeficientes, mas não os zera, o Lasso força alguns co-
eficientes a serem exatamente zero quando λ é suficientemente grande. Isso facilita a
interpretação dos modelos, além de funcionar como um mecanismo de seleção de variá-
veis.

7.2.3 Formulações Alternativas de Ridge e Lasso

As formulações de Ridge e Lasso com penalização λ também podem ser escritas como problemas
com restrições equivalentes. No caso do Lasso, podemos reescrevê-lo como:

min
β
∥Y − Xβ∥2 sujeito a

p

∑
j=1
|β j| ≤ s,

e, no caso do Ridge,

74 CAPÍTULO 7. SELEÇÃO DE MODELOS LINEARES E REGULARIZAÇÃO

min
β
∥Y − Xβ∥2 sujeito a

p

∑
j=1

β2
j ≤ s.

Para cada valor de λ > 0, existe um valor de s > 0 tal que as soluções das versões penalizadas
e das versões com restrição são equivalentes.

Essas formas ajudam a entender o comportamento geométrico das soluções. No caso em que
p = 2, a restrição do Lasso define um losango (por ser uma bola da norma ℓ1), enquanto a do
Ridge define um círculo (bola da norma ℓ2). Como os cantos do losango coincidem com os eixos
coordenados, é comum que a solução ótima ocorra exatamente em um desses cantos — ou seja,
com algum β j = 0. Isso explica por que o Lasso promove esparsidade e realiza implicitamente
seleção de variáveis. Já a forma circular do Ridge penaliza todos os coeficientes de forma suave
e simétrica, o que leva a coeficientes pequenos, mas raramente nulos.

Essas formulações também nos permitem interpretar o Lasso como uma aproximação convexa
ao problema de seleção de subconjunto. Esse problema pode ser formulado como:

min
β
∥Y − Xβ∥2 sujeito a

p

∑
j=1

I(β j ̸= 0) ≤ s,

onde I(·) é a função indicadora. Essa abordagem procura o menor erro possível utilizando
no máximo s variáveis, mas é um problema combinatório e computacionalmente inviável para
grandes p. O Lasso substitui essa restrição discreta por uma relaxação contínua via a norma ℓ1,
tornando o problema convexamente tratável e eficiente de resolver com métodos numéricos.

Para entender essa equivalência, vamos começar com a formulação com restrição do Lasso:

min
β

∥Y − Xβ∥2 sujeito a ∥β∥1 ≤ s

7.2. RIDGE E LASSO 75

Formamos o Lagrangiano com multiplicador λ ≥ 0:

L(β, λ) = ∥Y − Xβ∥2 + λ (∥β∥1 − s)

Como s é constante, minimizar L em relação a β equivale a minimizar:

min
β

∥Y − Xβ∥2 + λ∥β∥1

Ou seja, obtemos a formulação penalizada do Lasso. O parâmetro λ atua como multiplicador
de Lagrange: para cada valor de s, existe um λ ≥ 0 tal que ambas as formulações têm a mesma
solução ótima.

7.2.4 Interpretação via encolhimento

Para entender melhor o comportamento do Ridge e do Lasso, consideramos um caso simples:
n = p, a matriz de design X é a identidade I, e não há intercepto. Nesse cenário, o problema de
mínimos quadrados se torna:

min
β1,...,βp

p

∑
j=1

(yj − β j)
2,

cuja solução é simplesmente β̂ j = yj.
Aplicando a penalização do Ridge, o problema se torna:

min
β1,...,βp

p

∑
j=1

(yj − β j)
2 + λ

p

∑
j=1

β2
j ,

cuja solução analítica é:

β̂
Ridge
j =

yj

1 + λ
.

Ou seja, cada coeficiente é encolhido proporcionalmente em direção a zero, pela mesma razão.
Para o Lasso, temos:

min
β1,...,βp

p

∑
j=1

(yj − β j)
2 + λ

p

∑
j=1
|β j|,

cuja solução é dada por soft-thresholding:

β̂Lasso
j =


yj − λ/2 se yj > λ/2

yj + λ/2 se yj < −λ/2

0 se |yj| ≤ λ/2

Dessa forma, enquanto o Ridge encolhe todos os coeficientes pela mesma proporção, o Lasso
aplica uma redução constante λ/2, podendo zerar coeficientes com valores absolutos pequenos.
Esse mecanismo explica por que o Lasso realiza seleção de variáveis automaticamente, enquanto
o Ridge não zera coeficientes, apenas os diminui.

76 CAPÍTULO 7. SELEÇÃO DE MODELOS LINEARES E REGULARIZAÇÃO

Embora o cenário geral (com X não diagonal) seja mais complexo, a intuição permanece
válida: o Ridge suaviza todos os coeficientes, enquanto o Lasso favorece soluções esparsas.

Exercício 14. Encontre o análogo para o caso do best-subset selection.

7.2.5 Interpretação Bayesiana de Ridge e Lasso

A regressão Ridge e o Lasso podem ser vistos como estimativas de máxima a posteriori (MAP) em
um modelo Bayesiano. Assumimos o modelo linear:

Y = Xβ + ϵ, ϵ ∼ N (0, σ2 I),

onde a verossimilhança é dada por:

f (Y | X, β) ∝ exp
(
− 1

2σ2 ∥Y− Xβ∥2
)

.

Perceba que quando não impomos nenhum prior sobre β, a estimativa de máxima verossimi-
lhança (MLE) é:

β̂MLE = (X⊤X)−1X⊤Y,

que coincide com a solução de mínimos quadrados ordinários.
Agora, se assumirmos um prior sobre os coeficientes β, obtemos:

p(β | Y, X) ∝ f (Y | X, β) · p(β).

A solução MAP é então:

β̂MAP = arg max
β

log f (Y | X, β) + log p(β).

Duas escolhas clássicas para o prior levam às penalizações de Ridge e Lasso:

7.2. RIDGE E LASSO 77

• Ridge: prior Gaussiano i.i.d., β j ∼ N (0, τ2). Isso implica:

log p(β) ∝ − 1
2τ2 ∥β∥

2
2,

e a solução MAP se torna:

β̂ = arg min
β
∥Y− Xβ∥2 + λ∥β∥2

2, com λ =
σ2

τ2 .

• Lasso: prior Laplace (double-exponential), i.i.d., β j ∼ Laplace(0, b). Isso implica:

log p(β) ∝ −1
b
∥β∥1,

e a solução MAP é:

β̂ = arg min
β
∥Y− Xβ∥2 + λ∥β∥1, com λ =

σ2

b
.

Ambos os casos assumem erros Gaussianos, mas impõem diferentes estruturas a priori sobre
os coeficientes:

• O prior Gaussiano (Ridge) é suave e disperso: tende a produzir coeficientes pequenos, mas
raramente exatamente zero.

• O prior Laplace (Lasso) é pontudo no zero: concentra mais densidade ao redor do zero,
promovendo esparsidade.

Assim, Ridge e Lasso são interpretações MAP sob diferentes priors, enquanto mínimos qua-
drados (ou MLE) assume apenas a verossimilhança sem prior.

78 CAPÍTULO 7. SELEÇÃO DE MODELOS LINEARES E REGULARIZAÇÃO

Capítulo 8

Boosting

Em muitos problemas de aprendizado, pode ser difícil construir diretamente um modelo muito
preciso. Por outro lado, é mais factível encontrar modelos simples que sejam capazes de er-
rar menos do que um chute aleatório. Esse tipo de modelo é conhecido como weak learner ou
aprendiz fraco.

Definição 1 (Aprendiz fraco). Uma classe de problemas é dita ser aprendível por um weak learner se
existe um algoritmo que, dado qualquer distribuição dos dados, consegue produzir uma hipótese com erro
menor que 50% — ou seja, acerta um pouco mais do que o acaso.

Mais formalmente, existe algum γ > 0 tal que, para qualquer distribuição dos dados e qualquer
problema da classe, a hipótese h gerada satisfaz

P

(
R(h) ≤ 1

2
− γ

)
≥ 1− δ

para qualquer nível de confiança δ > 0 e com um número de amostras suficientemente grande.

Aqui, R(h) representa o erro da hipótese h. A condição significa que, com alta probabilidade,
o erro do modelo é estritamente menor do que 50% por uma margem γ.

Os modelos gerados por um aprendiz fraco são chamados de classificadores base (base classifi-
ers). A ideia central por trás do boosting é pegar esses classificadores fracos e combiná-los para
formar um modelo forte, ou seja, um modelo que tenha alta precisão.

O boosting faz isso utilizando métodos de comitê: ele combina várias hipóteses fracas para
construir um preditor mais preciso. Na prática, o boosting escolhe quais classificadores usar
e como combiná-los, atribuindo pesos maiores aos modelos que erram menos e focando nas
amostras onde os modelos anteriores erraram. Um dos algoritmos de boosting mais conhecidos
é o AdaBoost.

8.1 AdaBoost

Denotamos por H o conjunto de classificadores base, também chamado de conjunto de hipóteses,
a partir do qual o algoritmo seleciona os modelos. Cada classificador é uma função que recebe
uma entrada x e retorna um rótulo em {−1,+1}, ou seja, H ⊆ {−1,+1}X .

79

80 CAPÍTULO 8. BOOSTING

O AdaBoost funciona mantendo uma distribuição de pesos sobre os exemplos do conjunto de
treino. Inicialmente, essa distribuição é uniforme, ou seja, cada exemplo tem peso igual a 1/m.
A cada iteração, o algoritmo escolhe um classificador ht ∈ H que minimiza o erro ponderado
segundo a distribuição atual Dt:

ht = arg min
h∈H

m

∑
i=1
Dt(i) · 1h(xi) ̸=yi

onde 1h(xi) ̸=yi
vale 1 se o classificador erra o exemplo i e 0 caso contrário.

O erro do classificador ht na distribuição Dt é dado por

εt =
m

∑
i=1
Dt(i) · 1ht(xi) ̸=yi

e o peso associado a esse classificador é calculado como

αt =
1
2

log
(

1− εt

εt

)
de forma que classificadores mais precisos (menor εt) recebem maior peso.

Após calcular αt, a distribuição dos pesos sobre os exemplos é atualizada, aumentando o peso
dos exemplos que foram classificados incorretamente:

Dt+1(i) =
Dt(i) · exp (−αtyiht(xi))

Zt

8.1. ADABOOST 81

onde Zt é um fator de normalização que garante que a soma dos pesos seja igual a 1.
Ao final de T iterações, o classificador final é uma combinação linear dos classificadores base:

f (x) =
T

∑
t=1

αtht(x)

e a predição final é feita tomando o sinal dessa soma:

sign(f (x))

O procedimento completo do AdaBoost pode ser resumido no seguinte pseudocódigo:

Algorithm 6 AdaBoost
Require: Conjunto de treinamento S = {(x1, y1), . . . , (xm, ym)}, onde yi ∈ {−1,+1}
Require: Número de iterações T

1: Inicialize D1(i)← 1
m para todo i = 1, . . . , m

2: for t = 1 até T do
3: Escolha ht ∈ H que minimiza o erro ponderado:

ht = arg min
h∈H

m

∑
i=1
Dt(i) · 1h(xi) ̸=yi

4: Calcule o erro:

εt =
m

∑
i=1
Dt(i) · 1ht(xi) ̸=yi

5: Calcule o peso do classificador:

αt =
1
2

log
(

1− εt

εt

)
6: Calcule o fator de normalização:

Zt = 2
√

εt(1− εt)

7: for i = 1 até m do
8: Atualize a distribuição:

Dt+1(i) =
Dt(i) · exp(−αtyiht(xi))

Zt

9: end for
10: end for
11: Defina o classificador final:

f (x) =
T

∑
t=1

αtht(x)

12: return sign(f (x))

Esse processo permite que o AdaBoost combine sucessivamente vários classificadores fracos,
dando mais foco aos exemplos difíceis, até construir um modelo final com desempenho muito
superior aos modelos individuais.

82 CAPÍTULO 8. BOOSTING

8.1.1 Cálculo do erro empírico

Uma propriedade fundamental do AdaBoost é que seu erro empírico no conjunto de treinamento
decai de forma exponencial à medida que o número de iterações T cresce. Esse resultado é uma
consequência direta da forma como o algoritmo atualiza os pesos e da escolha dos classificadores
base.

Seja f = ∑T
t=1 αtht o classificador final, que é uma combinação linear dos classificadores base.

O erro empírico desse classificador no conjunto de treinamento S é definido por

R̂S(f) =
1
m

m

∑
i=1

1yi f (xi)≤0

onde a função indicadora vale 1 quando a predição está incorreta, ou seja, quando o sinal de
f (xi) não coincide com yi.

Para obter uma cota superior para esse erro, usamos a desigualdade geral

1u≤0 ≤ exp(−u)

válida para qualquer u ∈ R. Aplicando essa desigualdade, temos que

R̂S(f) =
1
m

m

∑
i=1

1yi f (xi)≤0 ≤
1
m

m

∑
i=1

e−yi f (xi)

Agora, usamos a identidade que relaciona a distribuição DT+1 com a função f . Sabemos que

DT+1(i) =
e−yi f (xi)

m ∏T
t=1 Zt

onde Zt é o fator de normalização na iteração t.
Reorganizando essa equação, obtemos

e−yi f (xi) = m · DT+1(i) ·
T

∏
t=1

Zt

Substituindo isso na expressão para o erro empírico, temos

R̂S(f) ≤ 1
m

m

∑
i=1

m · DT+1(i) ·
T

∏
t=1

Zt

Cancelando o fator m,

R̂S(f) ≤
(

m

∑
i=1
DT+1(i)

)
·

T

∏
t=1

Zt

Como DT+1 é uma distribuição, sua soma sobre todos os exemplos é igual a 1. Assim, obtemos

R̂S(f) ≤
T

∏
t=1

Zt

Portanto, o erro empírico é completamente controlado pelo produto dos fatores de normalização
Zt ao longo das iterações.

8.1. ADABOOST 83

Vamos então calcular Zt. Por definição,

Zt =
m

∑
i=1
Dt(i)e−αtyiht(xi)

Dividimos os exemplos em dois grupos: aqueles corretamente classificados (yiht(xi) = +1) e
aqueles incorretamente classificados (yiht(xi) = −1). Assim,

Zt = ∑
i:yiht(xi)=+1

Dt(i)e−αt + ∑
i:yiht(xi)=−1

Dt(i)eαt

A soma das probabilidades dos exemplos corretamente classificados é (1− εt), e dos incorreta-
mente classificados é εt. Portanto,

Zt = (1− εt)e−αt + εteαt

Agora substituímos a definição de αt, que é

αt =
1
2

log
(

1− εt

εt

)
Calculamos cada termo:

eαt =

√
1− εt

εt

e

e−αt =

√
εt

1− εt

Substituindo esses valores em Zt:

Zt = (1− εt)

√
εt

1− εt
+ εt

√
1− εt

εt

Multiplicamos cada termo:

Zt =
√

εt(1− εt)

(
1− εt√

εt(1− εt)
+

εt√
εt(1− εt)

)

Observe que os termos no parêntese somam exatamente 1:

(1− εt) + εt = 1

Portanto,
Zt = 2

√
εt(1− εt)

Agora calculamos o produto dos Zt ao longo de t = 1 até T:

T

∏
t=1

Zt =
T

∏
t=1

2
√

εt(1− εt)

Fatorando o 2:

= 2T
T

∏
t=1

√
εt(1− εt)

84 CAPÍTULO 8. BOOSTING

Reescrevemos cada termo da raiz como√
εt(1− εt) =

√
1
4
−
(

1
2
− εt

)2

Aplicamos então a desigualdade 1− x ≤ e−x√
1− 4

(
1
2
− εt

)2

≤ exp

(
−2
(

1
2
− εt

)2
)

que é válida para qualquer número real.
Substituindo essa cota no produto, obtemos

T

∏
t=1

Zt ≤ exp

(
−2

T

∑
t=1

(
1
2
− εt

)2
)

Portanto, o erro empírico satisfaz

R̂S(f) ≤ exp

(
−2

T

∑
t=1

(
1
2
− εt

)2
)

Este resultado mostra que o erro empírico decai exponencialmente rápido à medida que T au-
menta, desde que cada classificador tenha erro εt ligeiramente inferior a 50%.

No caso em que todos os classificadores satisfazem εt ≤ 1
2 − γ para algum γ > 0 constante,

então obtemos diretamente a cota

R̂S(f) ≤ exp(−2γ2T)

ou seja, o erro empírico decai exponencialmente em função do número de iterações T.

8.1.2 Um pouco de teoria

Um fenômeno interessante observado na prática com o AdaBoost é que, apesar do erro de trei-
namento frequentemente cair rapidamente até zero, o erro no conjunto de teste continua dimi-
nuindo por algum tempo mesmo após o treinamento já não apresentar mais erros. Esse com-
portamento é contraintuitivo do ponto de vista clássico de sobreajuste, onde se espera que, ao

8.1. ADABOOST 85

atingir erro zero no treino, o modelo passe a superajustar os dados e o erro de teste comece a
aumentar. No entanto, no AdaBoost, o que se observa é que, após alcançar erro zero no conjunto
de treino, o algoritmo continua ajustando as margens — ou seja, continua aumentando a confi-
ança nas predições, especialmente afastando os exemplos corretamente classificados da fronteira
de decisão. Esse aumento das margens tem efeito direto na melhora da generalização, e por
isso o erro no teste continua decaindo por várias iterações mesmo quando o erro no treino já é
zero. Esse fenômeno está intimamente relacionado ao fato de que o AdaBoost não apenas busca
classificar corretamente, mas também maximizar as margens dos exemplos.

Esse comportamento, que inicialmente parece surpreendente, pode ser explicado matemati-
camente por uma cota de generalização baseada em margens. Esse resultado mostra que o erro
verdadeiro de um classificador não depende apenas do erro no conjunto de treinamento, mas
também da distribuição das margens — isto é, de quão "confiantes"são as predições realizadas.
Especificamente, vale o seguinte:

Teorema 3 (Cota de generalização via margem). Seja H um conjunto de funções de valores reais. Fixe
ρ > 0. Então, para qualquer δ > 0, com probabilidade ao menos 1− δ, vale que, para todo h ∈ conv(H),

R(h) ≤ R̂S,ρ(h) +
2
ρ
Rm(H) +

√
log 1

δ

2m

e também

R(h) ≤ R̂S,ρ(h) +
2
ρ
R̂S(H) + 3

√
log 2

δ

2m

onde R(h) é o erro verdadeiro, R̂S,ρ(h) é o erro empírico considerando apenas os exemplos cuja margem é
menor que ρ, e Rm(H) é a complexidade de Rademacher do conjunto H.

De forma intuitiva, esse resultado nos diz que a generalização de modelos como AdaBoost não
depende apenas do erro no conjunto de treinamento, mas também de como esse erro está dis-
tribuído em termos de margem. O termo R̂S,ρ(h) mede quantos exemplos estão próximos da
fronteira de decisão — ou seja, com margem menor que ρ. Se quase todos os exemplos têm
margens grandes, esse termo é pequeno, mesmo que o erro zero tenha sido alcançado.

O segundo termo, que é proporcional a 1
ρRm(H), reflete a influência da complexidade do

modelo. Aqui, a complexidade de Rademacher mede o quanto o conjunto de classificadores H é
flexível, ou seja, capaz de se ajustar a diferentes padrões nos dados. Quanto maior H, maior essa
complexidade. No entanto, ela aparece dividida por ρ, o que significa que, quanto maior for a
margem, menor será o efeito da complexidade no bound de generalização.

Por fim, o terceiro termo é puramente estatístico, decrescendo com 1/
√

m, e representa o
efeito do tamanho da amostra na confiança do bound.

No contexto do AdaBoost, esse teorema formaliza a intuição de que, após alcançar erro zero
no treinamento, o algoritmo continua melhorando a generalização não por reduzir mais o erro
empírico (que já é zero), mas por aumentar as margens — isto é, tornando as classificações mais
confiantes, afastando os exemplos da fronteira de decisão. Esse mecanismo explica por que,
empiricamente, o erro de teste muitas vezes continua caindo mesmo depois do erro de treino ter
sido completamente eliminado.

86 CAPÍTULO 8. BOOSTING

8.2 Gradient Boosting

O Gradient Boosting é uma generalização do AdaBoost desenvolvida no início dos anos 2000
como uma abordagem mais ampla e flexível para o problema de boosting. Enquanto o AdaBoost
foi originalmente proposto para classificação binária, o Gradient Boosting estende a ideia central
— ajustar modelos sucessivos para corrigir os erros dos anteriores — para qualquer função de
perda diferenciável, permitindo seu uso tanto em regressão quanto em classificação.

Historicamente, a conexão entre AdaBoost e otimização foi primeiramente identificada por
Leo Breiman, que mostrou que o AdaBoost pode ser interpretado como um algoritmo de otimi-
zação que minimiza uma função de perda exponencial. Essa observação levou Jerome Friedman,
em 2001, a formalizar o Gradient Boosting como um método geral de descida de gradiente no
espaço de funções. Esse framework permite entender boosting como uma sequência de passos
na direção oposta ao gradiente da função de risco, de maneira completamente análoga à descida
de gradiente tradicional no espaço de vetores.

Antes de formalizarmos o Gradient Boosting, é útil revisar a intuição da descida de gradiente
no contexto clássico de otimização.

Seja F(θ) uma função de custo que depende de um vetor de parâmetros θ ∈ Rd. Nosso
objetivo é resolver

min
θ

F(θ)

A intuição da descida de gradiente surge da aproximação de Taylor de primeira ordem da função
F ao redor de um ponto θ0:

F(θ0 + h) ≈ F(θ0) +∇F(θ0)
⊤h

Esse desenvolvimento nos diz que, para pequenos deslocamentos g, o valor da função varia
aproximadamente de forma linear na direção de g. A direção do gradiente ∇F(θ0) aponta na
direção de maior crescimento local de F. Portanto, se escolhermos

h = −η · ∇F(θ0)

com η > 0 pequeno, teremos

F(θ0 + h) ≈ F(θ0)− η · ∥∇F(θ0)∥2

ou seja, a função diminui, pois o termo subtraído é não-negativo.
Esse raciocínio leva à regra de atualização da descida de gradiente:

θt = θt−1 − η · ∇F(θt−1)

onde o parâmetro η controla o tamanho do passo.
Se a função F for convexa e suave, a descida de gradiente converge para o mínimo global,

desde que o learning rate seja escolhido de forma adequada. Na prática, mesmo em problemas
não convexos, esse método é extremamente utilizado e serve como base para muitos algoritmos
modernos de otimização.

A ideia central do Gradient Boosting é aplicar o princípio da descida de gradiente no espaço
de funções. Assim como no caso paramétrico nos movemos na direção oposta ao gradiente para

8.2. GRADIENT BOOSTING 87

reduzir uma função de custo, aqui buscamos, a cada iteração, uma função que aponta na direção
que mais reduz o risco.

Sejam (X, Y) variáveis aleatórias conjuntas, com X ∈ X e Y ∈ R (ou {−1,+1} na classifi-
cação). Seja L(Y, z) uma função de perda que mede o custo de predizer z quando o verdadeiro
valor observado é Y. O objetivo é encontrar uma função f : X → R que minimiza o risco
populacional

R(f) = E[L(Y, f (X))].

O procedimento começa com uma função inicial

f0 = 0

e realiza atualizações iterativas da forma

ft(x) = ft−1(x) + ν · ht(x)

onde ht aproxima a direção de descida e ν > 0 é o learning rate.
O gradiente funcional no ponto x é dado por

gt(x) = E

[
∂

∂z
L(Y, z)

∣∣∣∣
z= ft−1(x)

∣∣∣X = x

]
.

Na prática, como não conhecemos a distribuição dos dados, trabalhamos com uma amostra
{(xi, yi)}n

i=1 e minimizamos o risco empírico

R̂(f) =
1
n

n

∑
i=1

L(yi, f (xi)).

O gradiente funcional se torna simplesmente o gradiente da perda no ponto (xi, yi):

gt(xi) =
∂

∂z
L(yi, z)

∣∣∣∣
z= ft−1(xi)

.

O modelo ht é ajustado para aproximar os pseudo-resíduos

ri,t = −gt(xi)

sobre os dados {xi}, tipicamente via uma árvore de decisão.
A atualização segue

ft(x) = ft−1(x) + ν · ht(x).

Exemplos de funções de perda e seus gradientes:

• Perda quadrática (regressão):

L(y, z) = (y− z)2,
∂

∂z
L = −2(y− z)

Pseudo-resíduo: (y− ft−1(x)).

Note que nesse caso, o primeiro resíduo é r = y − 0 e portanto na primeira iteração do
método, tentamos aprender y dado x, como numa tarefa usual de aprendizado supervisio-
nado.

88 CAPÍTULO 8. BOOSTING

• Perda exponencial (classificação binária, AdaBoost):

L(y, z) = exp(−yz), y ∈ {−1,+1}
∂

∂z
L = −y exp(−yz)

Atribui mais peso a exemplos mal classificados.

• Log-loss (classificação binária, regressão logística):

L(y, z) = log(1 + exp(−2yz))

∂

∂z
L = − 2y

1 + exp(2yz)
O pseudo-resíduo se comporta como o erro na probabilidade predita.

• Perda absoluta (regressão robusta):

L(y, z) = |y− z|

Gradiente subdiferencial:
∂

∂z
L =

−1 se y− z > 0

+1 se y− z < 0

Leva à mediana condicional em vez da média.

O Gradient Boosting é, portanto, um framework geral de otimização que aplica descida de
gradiente no espaço de funções. Escolher a função de perda define os pseudo-resíduos e, conse-
quentemente, a dinâmica do algoritmo, permitindo sua aplicação tanto em regressão quanto em
classificação.

Algorithm 7 Gradient Boosting via Pseudo-Resíduos
Require: Dados de treino {(xi, yi)}n

i=1

Require: Número de iterações B
Require: Função de perda L(y, z)
Require: Learning rate ν > 0
Require: Espaço de funções H (ex.: árvores)

1: Inicialize f0(x) = 0
2: for b = 1 até B do
3: Computar os pseudo-resíduos:

ri,b = −
∂

∂z
L(yi, z)

∣∣∣∣
z= fb−1(xi)

4: Ajustar um modelo hb ∈ H para aprender ri,b dado xi

5: Atualizar o modelo:
fb(x) = fb−1(x) + ν · hb(x)

6: end for
7: return Modelo final fB(x)

Capítulo 9

SVM

Este capítulo apresenta um dos algoritmos de classificação mais bem fundamentados teorica-
mente e também um dos mais eficazes na prática: as Máquinas de Vetores de Suporte (SVMs).
Começaremos com a formulação do problema de classificação linear, depois trataremos do caso
em que os dados não são separáveis e, por fim, discutiremos a fundamentação teórica baseada
na noção de margem.

Considere um espaço de entrada X ⊂ Rp, com p ≥ 1, e um espaço de saída Y = {−1,+1}.
Suponha que exista uma função desconhecida f : X → Y que associa rótulos às observações.
Dado um conjunto de hipóteses H, que contém funções que mapeiam X em Y , o objetivo da
tarefa de classificação binária é escolher uma hipótese h ∈ H, também chamada de classificador
binário, de forma que seu erro de generalização seja pequeno.

Disponibiliza-se uma amostra de treinamento S = {(x1, y1), . . . , (xn, yn)} ⊂ (X × Y)n, com
yi = f (xi), onde os pares (xi, yi) são amostrados de forma i.i.d. a partir de uma distribuição
desconhecida D. O desempenho do classificador h é avaliado pelo erro de generalização, definido
como

RD(h) = Px∼D[h(x) ̸= f (x)].

A escolha do conjunto de hipóteses H é fundamental. Resultados anteriores, como o princí-
pio da navalha de Occam, sugerem que conjuntos com menor complexidade tendem a oferecer
melhores garantias de aprendizado, assumindo todas as demais condições iguais. Uma classe
de hipóteses naturalmente simples e bastante estudada é a dos classificadores lineares, também
conhecidos como hiperplanos. Essa classe pode ser definida como:

H = {x 7→ sign(⟨w, x⟩+ b) : w ∈ Rp, b ∈ R}.

89

90 CAPÍTULO 9. SVM

O problema de aprendizado com essa classe recebe o nome de problema de classificação
linear. Geometricamente, a equação ⟨w, x⟩ + b = 0 define um hiperplano em Rp, onde w é
um vetor normal não nulo ao hiperplano e b é um escalar. Um classificador da forma x 7→
sign(⟨w, x⟩+ b) atribui o rótulo +1 a todos os pontos que estão de um lado do hiperplano e o
rótulo −1 aos pontos que estão do outro lado.

9.1 Caso separável

9.1.1 Problema primal

Passamos agora ao caso em que a amostra de treinamento S = {(x1, y1), . . . , (xn, yn)} pode ser
perfeitamente separada por um hiperplano linear. Isso equivale a supor que existe um par
(w, b) ∈ (Rp \ {0})×R tal que

∀i ∈ [n], yi(⟨w, xi⟩+ b) ≥ 0.

Ou seja, o hiperplano ⟨w, x⟩+ b = 0 separa corretamente todos os exemplos da amostra, classi-
ficando os pontos com yi = +1 de um lado e os com yi = −1 do outro.

No entanto, há infinitos hiperplanos que satisfazem essa propriedade. A questão é: qual
deles devemos escolher? O critério adotado pelas SVMs é selecionar o hiperplano com **maior
margem geométrica**.

A margem geométrica ρh(x) de um classificador linear h(x) = ⟨w, x⟩+ b em um ponto x é a
distância euclidiana desse ponto ao hiperplano de decisão, dada por:

ρh(x) =
|⟨w, x⟩+ b|
∥w∥2

.

Essa fórmula pode ser demonstrada observando que a projeção ortogonal de x sobre o hiper-
plano ocorre ao longo da direção w. Se considerarmos a reta r(t) = x + tw, o ponto de interseção
com o hiperplano ocorre quando ⟨w, x + tw⟩+ b = 0, o que nos dá

t′ = −⟨w, x⟩+ b
∥w∥2 .

A distância entre x e r(t′) é então ∥t′w∥ = |⟨w,x⟩+b|
∥w∥ , como desejado.

Exercício 15. Preencha os detalhes da dedução geométrica da fórmula da margem.

A margem geométrica do classificador h em relação à amostra S = {x1, . . . , xn} é definida
como:

ρh = min
i∈[n]

ρh(xi) = min
i∈[n]

|⟨w, xi⟩+ b|
∥w∥ .

A SVM procura o hiperplano separador que maximiza essa margem mínima — o chamado
hiperplano de margem máxima. Podemos então escrever o problema de otimização como:

ρ = max
w,b : yi(⟨w,xi⟩+b)≥0

min
i∈[n]

|⟨w, xi⟩+ b|
∥w∥ .

9.1. CASO SEPARÁVEL 91

Note agora que, para qualquer (w, b) que separa corretamente a amostra, temos yi(⟨w, xi⟩+
b) ≥ 0. Além disso, para tais (w, b), o valor absoluto pode ser removido pela identidade:

|⟨w, xi⟩+ b| = yi(⟨w, xi⟩+ b),

uma vez que o rótulo yi garante o sinal positivo da expressão. Assim, podemos escrever:

ρ = max
w,b

min
i∈[n]

yi(⟨w, xi⟩+ b)
∥w∥ .

Agora, note que a expressão

min
i∈[n]

yi(⟨w, xi⟩+ b)
∥w∥

é invariante por multiplicação simultânea de w e b por qualquer escalar positivo. De fato, se
substituímos (w, b) por (αw, αb), com α > 0, tanto o numerador quanto o denominador da
fração são multiplicados por α, e o fator se cancela.

Isso nos permite fixar a escala de (w, b) da forma mais conveniente. Uma escolha natural
é normalizar os parâmetros para que o menor valor de yi(⟨w, xi⟩+ b) seja igual a 1. Sob essa
convenção, a margem geométrica passa a ser

ρ =
1
∥w∥ ,

e o problema de maximização da margem pode ser reformulado como:

ρ = max
w,b : mini∈[n] yi(⟨w,xi⟩+b)=1

1
∥w∥ = max

w,b : yi(⟨w,xi⟩+b)≥1, ∀i∈[n]

1
∥w∥ .

A equivalência entre as duas expressões decorre do fato de que, se (w, b) satisfaz as restrições
yi(⟨w, xi⟩ + b) ≥ λ > 1 para todo i, então podemos considerar os parâmetros reescalonados
(w′, b′) = (w/λ, b/λ), que satisfazem

yi(⟨w′, xi⟩+ b′) =
1
λ

yi(⟨w, xi⟩+ b) ≥ 1,

com ∥w′∥ = ∥w∥/λ < ∥w∥. Portanto, o par reescalonado obedece às mesmas restrições com
margem funcional mínima igual a 1, e resulta em uma norma menor — ou seja, uma margem
maior. Isso mostra que, na formulação com ≥ 1, a solução ótima sempre ocorre no caso em que
o mínimo é igual a 1, justificando a troca da igualdade por desigualdade.

Como maximizar 1
∥w∥ é equivalente a minimizar ∥w∥, e mais convenientemente 1

2∥w∥2, a
solução da SVM no caso separável corresponde ao seguinte problema de otimização convexa:

min
w,b

1
2
∥w∥2 sujeito a yi(⟨w, xi⟩+ b) ≥ 1, ∀i ∈ [n].

A função objetivo F(w) = 1
2∥w∥2 é infinitamente diferenciável. Seu gradiente é ∇F(w) = w,

e a matriz hessiana é ∇2F(w) = I, a matriz identidade. Como todos os autovalores da hessiana
são estritamente positivos, segue que F é estritamente convexa.

92 CAPÍTULO 9. SVM

9.1.2 Um pouco de otimização convexa

Para resolver problemas de otimização com restrições, uma ferramenta fundamental é o Lagran-
giano. Dado um problema de minimização com restrições de desigualdade da forma

min
z∈Rd

f (z) sujeito a gi(z) ≤ 0, i = 1, . . . , m,

o Lagrangiano associado é definido como

L(z, λ) = f (z) +
m

∑
i=1

λigi(z),

onde λi ≥ 0 são os multiplicadores de Lagrange. Intuitivamente, os termos λigi(z) penalizam o
descumprimento das restrições gi(z) ≤ 0.

As soluções ótimas desse problema satisfazem as chamadas condições de Karush-Kuhn-
Tucker (KKT), que generalizam as condições de otimalidade de Lagrange para problemas com
desigualdades. No caso em que f é convexa, gi são funções convexas e as restrições são qua-
lificadas (por exemplo, há um ponto estritamente viável), as condições KKT são necessárias e
suficientes para a otimalidade global.

As condições de Karush-Kuhn-Tucker (KKT) exigem que existam z∗ ∈ Rd e λ∗ ∈ Rm tais que:

• Estacionaridade: ∇ f (z∗) + ∑m
i=1 λ∗i∇gi(z∗) = 0;

• Viabilidade primal: gi(z∗) ≤ 0 para todo i;

• Viabilidade dual: λ∗i ≥ 0 para todo i;

• Complementaridade: λ∗i gi(z∗) = 0 para todo i.

9.1.3 Vetores de suporte

Voltando ao problema de otimização primal, notamos que as restrições são afins e, portanto,
qualificadas. Tanto a função objetivo quanto as restrições são continuamente diferenciáveis e
convexas, o que garante, pelo que as condições KKT são válidas no ponto ótimo.

Vamos introduzir variáveis de Lagrange αi ≥ 0 associadas às n restrições, e denotar por
α = (α1, . . . , αn)⊤ ∈ Rn

+. O Lagrangiano do problema primal é dado por:

L(w, b, α) =
1
2
∥w∥2 −

n

∑
i=1

αi [yi(⟨w, xi⟩+ b)− 1] .

As condições KKT são obtidas anulando o gradiente do Lagrangiano em relação às variáveis
primais w e b, e impondo a condição de complementaridade. Especificamente:

• Derivando em relação a w:

∇wL = w−
n

∑
i=1

αiyixi = 0 ⇒ w =
n

∑
i=1

αiyixi;

• Derivando em relação a b:

∇bL = −
n

∑
i=1

αiyi = 0;

9.1. CASO SEPARÁVEL 93

• Condição de complementaridade:

αi (yi(⟨w, xi⟩+ b)− 1) = 0, para todo i.

A primeira equação mostra que o vetor w na solução do problema é uma combinação linear
dos vetores da amostra. Um vetor xi contribui para essa combinação apenas se αi ̸= 0. Tais
vetores são chamados de vetores de suporte.

Pela condição de complementaridade, sempre que αi ̸= 0, temos yi(⟨w, xi⟩+ b) = 1, ou seja,
esses pontos estão exatamente sobre as hiperplanos marginais ⟨w, x⟩+ b = ±1.

Os vetores de suporte determinam completamente a solução do problema. Vetores não su-
portes (αi = 0) não afetam a posição do hiperplano — sua presença ou ausência não altera a
resposta da SVM. Apesar de a solução (w, b) ser única (graças à convexidade estrita do pro-
blema), os vetores de suporte não são necessariamente únicos. Como qualquer hiperplano em
Rp é definido por p pontos em posição geral, bastam p + 1 vetores de suporte para determinar a
solução — embora, em geral, mais de p + 1 pontos possam estar sobre a margem.

9.1.4 Um breve comentário sobre dualidade

Dualidade é um conceito fundamental em otimização. A ideia central é que, dado um problema
de minimização (o chamado problema primal), podemos associar a ele um problema alternativo,
chamado dual, cuja estrutura pode ser mais simples ou mais informativa. Resolver o problema
dual, quando possível, fornece um limite inferior (ou superior, no caso de maximização) para a
solução do primal.

Considere um problema de otimização com restrições de desigualdade da forma:

min
z∈Rd

f (z) sujeito a gi(z) ≤ 0, i = 1, . . . , m.

Definimos o Lagrangiano associado como:

L(z, λ) = f (z) +
m

∑
i=1

λigi(z), com λi ≥ 0.

94 CAPÍTULO 9. SVM

Para cada vetor de multiplicadores λ ≥ 0, a função

d(λ) := inf
z
L(z, λ)

define o valor dual correspondente, e o problema dual consiste em maximizar essa função:

max
λ≥0

d(λ).

Esse valor dual fornece sempre um limite inferior para o ótimo do primal. De fato, se z é
viável (isto é, satisfaz gi(z) ≤ 0) e λ ≥ 0, então os termos λigi(z) são não positivos, o que implica
que L(z, λ) ≤ f (z). Em particular, isso vale para o ponto ótimo z∗, o que nos dá

d(λ) = inf
z
L(z, λ) ≤ L(z∗, λ) ≤ f (z∗) = p∗.

Portanto, o valor ótimo dual d∗ satisfaz sempre d∗ ≤ p∗, o que é conhecido como dualidade fraca.
Isso mostra que o dual está sempre “por baixo” do primal, e justifica a estratégia de maximizar
a função dual para obter bons limites inferiores. A diferença p∗ − d∗ é chamada de dual gap, e
mede o quanto estamos distantes da solução ótima do problema original.

Em problemas convexos com restrições bem comportadas — por exemplo, se f e os gi são
convexos e existe um ponto estritamente viável (gi(z) < 0 para todo i) — temos que o dual gap
é nulo, isto é, d∗ = p∗. Esse resultado é conhecido como dualidade forte, e garante que podemos
resolver o problema primal indiretamente, via sua formulação dual, sem perda de exatidão.

9.1.5 Problema dual

Vamos agora derivar a formulação dual do problema primal da SVM. Para isso, substituímos no
Lagrangiano a expressão de w em termos das variáveis dual αi, conforme obtida pela condição
KKT:

w =
n

∑
i=1

αiyixi.

Substituindo essa expressão no Lagrangiano e aplicando a condição de viabilidade ∑n
i=1 αiyi = 0,

obtemos:

L =
1
2

∥∥∥∥∥ n

∑
i=1

αiyixi

∥∥∥∥∥
2

−
n

∑
i=1

αi

[
yi

(
n

∑
j=1

αjyj⟨xj, xi⟩+ b

)
− 1

]

=
1
2

n

∑
i,j=1

αiαjyiyj⟨xi, xj⟩ −
n

∑
i,j=1

αiαjyiyj⟨xi, xj⟩+ b
n

∑
i=1

αiyi +
n

∑
i=1

αi.

O segundo termo é igual a duas vezes o primeiro, e o termo com b é zero devido à restrição

∑i αiyi = 0. Assim, obtemos:

L =
n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyj⟨xi, xj⟩.

A formulação dual da SVM no caso separável é, portanto:

max
α

n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyj⟨xi, xj⟩,

9.2. CASO NÃO SEPARÁVEL 95

sujeito a αi ≥ 0,
n

∑
i=1

αiyi = 0.

A função objetivo do dual é uma função quadrática côncava de α, pois a hessiana ∇2G = −A,
com A = (yiyj⟨xi, xj⟩), é negativa semidefinida (por ser o negativo de uma matriz de Gram).
Como as restrições são afins e qualificadas, temos que o problema dual é uma QP convexa com
dualidade forte. Isso garante que a solução ótima do problema dual coincide com a do primal.

Uma vez encontrada a solução α, podemos determinar a hipótese aprendida substituindo a
expressão de w no classificador linear:

h(x) = sign(⟨w, x⟩+ b) = sign

(
n

∑
i=1

αiyi⟨xi, x⟩+ b

)
.

Além disso, o valor de b pode ser obtido a partir de qualquer vetor de suporte xi tal que
αi > 0, usando o fato de que para esses pontos yi(⟨w, xi⟩+ b) = 1, ou seja:

b = yi −
n

∑
j=1

αjyj⟨xj, xi⟩.

As equações acima revelam uma característica importante das SVMs: a hipótese aprendida
depende apenas de produtos internos entre exemplos de treinamento e o ponto de teste. Isso
será crucial mais adiante, ao introduzirmos o método do kernel.

Também podemos usar a equação anterior para derivar uma expressão da margem geomé-
trica ρ em função das variáveis α. Multiplicando ambos os lados por αiyi e somando sobre os
vetores de suporte (αi > 0), obtemos:

n

∑
i=1

αiyib =
n

∑
i=1

αiy2
i −

n

∑
i,j=1

αiαjyiyj⟨xi, xj⟩.

Como y2
i = 1 e ∑i αiyi = 0, isso implica:

0 =
n

∑
i=1

αi − ∥w∥2,

ou seja,

∥w∥2 =
n

∑
i=1

αi.

Como a margem geométrica é ρ = 1
∥w∥ , temos:

ρ2 =
1
∥w∥2 =

1
∑n

i=1 αi
=

1
∥α∥1

.

Assim, a margem está inversamente relacionada à norma-L1 do vetor α.

9.2 Caso não separável

No caso não separável, a suposição de que existe um hiperplano que separa perfeitamente os
dados deixa de ser válida. Para contornar isso, introduzimos variáveis de folga (slack variables)

96 CAPÍTULO 9. SVM

ξi ≥ 0 que permitem violações marginais nas restrições. O problema primal torna-se:

min
w,b,ξ

1
2
∥w∥2 + C

n

∑
i=1

ξi sujeito a yi(⟨w, xi⟩+ b) ≥ 1− ξi, ξi ≥ 0.

No caso não separável, introduzimos variáveis de folga ξi ≥ 0 para permitir que alguns
exemplos violem a margem, total ou parcialmente. O termo ∑ ξi penaliza essas violações, e o
parâmetro C > 0 controla o equilíbrio entre maximizar a margem e permitir erros de classificação.

O parâmetro C atua como um peso para a penalização de pontos mal classificados ou que
ficam dentro da margem. Valores altos de C impõem uma penalização severa a essas violações,
forçando o modelo a buscar uma separação quase perfeita dos dados de treinamento — o que
pode reduzir o viés, mas aumenta o risco de overfitting, especialmente na presença de ruído.
Já valores pequenos de C tornam o modelo mais permissivo a erros, favorecendo margens mais
largas e soluções mais regulares, que tendem a generalizar melhor.

Portanto, C é um hiperparâmetro crucial, pois regula diretamente o trade-off entre complexi-
dade do modelo e erro de treinamento. Na prática, seu valor é escolhido por validação cruzada.

A construção do problema dual segue de forma análoga ao caso separável: escrevemos o
Lagrangiano, aplicamos as condições KKT e eliminamos as variáveis primais w, b e agora também
as ξi. A única modificação estrutural importante no dual é a restrição 0 ≤ αi ≤ C, que substitui a
condição αi ≥ 0 do caso separável. Isso reflete o fato de que agora há um custo controlado para
violações de margem. A função objetivo, a restrição ∑ αiyi = 0, e a expressão da hipótese final
mantêm a mesma forma.

9.3 O truque do kernel

Na formulação primal da SVM, o classificador é linear, ou seja, sua fronteira de decisão é um
hiperplano no espaço original dos dados. No entanto, a formulação dual revela uma estrutura
importante: a solução ótima depende apenas de produtos internos entre os dados de treina-
mento.

Mais precisamente, o classificador obtido a partir da solução dual é da forma:

h(x) = sign

(
n

∑
i=1

αiyi⟨xi, x⟩+ b

)
,

9.3. O TRUQUE DO KERNEL 97

onde os coeficientes αi são determinados pela solução do problema dual. Note que os dados
aparecem apenas por meio de produtos internos ⟨xi, x⟩.

Essa observação permite generalizar a SVM para casos não lineares. A ideia é supor que
os dados, embora não separáveis no espaço original Rp, possam ser linearmente separáveis em
um espaço de dimensão maior (possivelmente infinita), obtido por um mapeamento não linear
ϕ : Rp → H. Em vez de trabalhar diretamente com ϕ(x), utilizamos uma função kernel K(x, x′)
que satisfaz:

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩.

Dessa forma, substituímos os produtos internos ⟨xi, xj⟩ por K(xi, xj) no problema dual. Como
o dual depende apenas desses produtos, todo o algoritmo passa a operar implicitamente no es-
paço transformadoH, sem necessidade de calcular ϕ(x) explicitamente. Esse artifício é conhecido
como truque do kernel.

Exemplos clássicos de funções kernel incluem:

• Linear: K(x, x′) = ⟨x, x′⟩

• Polinomial: K(x, x′) = (⟨x, x′⟩+ c)d

• Gaussiano (RBF): K(x, x′) = exp
(
−γ∥x− x′∥2)

Com isso, as SVMs passam a ser capazes de aprender fronteiras de decisão não lineares,
mantendo as garantias teóricas e a robustez do caso linear.

9.3.1 Formulações primal e dual com kernel

O uso de kernels não altera conceitualmente o problema primal, mas transforma completamente
a formulação dual. No espaço de características H, o problema primal com slack é:

min
w,b,ξ

1
2
∥w∥2 + C

n

∑
i=1

ξi

sujeito a yi(⟨w, ϕ(xi)⟩+ b) ≥ 1− ξi, ξi ≥ 0.

Entretanto, como ϕ(x) pode ser de dimensão muito alta, resolvemos o problema dual, onde
os dados aparecem apenas via produtos internos. A formulação dual com kernel é:

98 CAPÍTULO 9. SVM

max
α

n

∑
i=1

αi −
1
2

n

∑
i,j=1

αiαjyiyjK(xi, xj)

sujeito a 0 ≤ αi ≤ C, ∀i,
n

∑
i=1

αiyi = 0.

Por fim, o classificador aprendido é dado por:

h(x) = sign

(
n

∑
i=1

αiyiK(xi, x) + b

)
,

onde apenas os vetores de suporte (aqueles com αi > 0) contribuem para a decisão final.

Capítulo 10

Redução de dimensão

Em muitos problemas de aprendizado de máquina e análise de dados, lidamos com conjuntos
de dados de alta dimensão, nos quais cada observação é descrita por um grande número de
variáveis (ou atributos). Embora alta dimensionalidade permita capturar muitos aspectos dos
dados, ela também pode trazer dificuldades tanto computacionais quanto estatísticas.

• Sobreajuste (overfitting): Em espaços de alta dimensão, é mais fácil encontrar funções que
se ajustem perfeitamente aos dados de treinamento, mas Análise de componentes princi-
paisque generalizam mal.

• Custo computacional: Métodos de aprendizado e visualização podem se tornar inviáveis
conforme cresce a dimensionalidade.

• Ruído e redundância: Muitas variáveis podem ser irrelevantes ou fortemente correlaciona-
das, adicionando ruído ao modelo e dificultando sua interpretação.

A redução de dimensionalidade busca transformar os dados para um espaço de menor di-
mensão preservando, na medida do possível, suas características essenciais.

Neste capítulo, abordamos métodos não supervisionados de redução de dimensionalidade,
com ênfase na Análise de Componentes Principais (PCA) e t-SNE.

10.1 Análise de componentes principais

Seja A ∈ Rp×p uma matriz simétrica, isto é, tal que A⊤ = A. Um resultado fundamental da
álgebra linear garante que toda matriz simétrica admite uma decomposição espectral da forma

A = QΛQ⊤,

onde:

• Q ∈ Rp×p é uma matriz ortogonal, ou seja, Q⊤Q = I;

• Λ ∈ Rp×p é uma matriz diagonal contendo os autovalores reais de A;

• As colunas de Q são os autovetores ortonormais de A.

99

100 CAPÍTULO 10. REDUÇÃO DE DIMENSÃO

Essa decomposição nos permite interpretar A como uma combinação linear de projeções ao
longo de direções ortogonais, ponderadas por seus respectivos autovalores:

A =
p

∑
i=1

λiqiq⊤i ,

onde λi é o i-ésimo autovalor e qi é o autovetor correspondente.
A decomposição espectral A = QΛQ⊤ de uma matriz simétrica A ∈ Rp×p pode ser inter-

pretada geometricamente como a composição de três transformações lineares: uma rotação (ou
mudança de base ortogonal), seguida de uma dilatação ao longo dos eixos coordenados, seguida
por outra rotação. Especificamente, a matriz Q⊤ realiza uma rotação que alinha os vetores do
espaço com os autovetores de A, a matriz diagonal Λ aplica dilatações (ou contrações) escalares
ao longo dessas direções, e a matriz Q retorna ao sistema original de coordenadas.

Essa interpretação mostra que, a menos de rotações, o comportamento essencial da trans-
formação associada a A é determinado por Λ, ou seja, pelos autovalores. Em particular, os
autovalores descrevem quanto uma forma esférica é alongada ou comprimida ao longo das di-
reções associadas a cada autovetor. Portanto, do ponto de vista geométrico, entender a ação
de uma matriz simétrica sobre o espaço equivale a entender os valores em Λ, pois as rotações
preservam ângulos e distâncias relativas, não alterando a natureza da deformação — apenas sua
orientação.

A ideia central da análise de componentes principais (PCA) é aplicar a decomposição es-
pectral a uma matriz simétrica construída a partir dos dados, com o objetivo de entender e
simplificar sua estrutura de variabilidade.

Seja X ∈ Rn×p a matriz de dados, onde cada linha representa uma observação e cada coluna
corresponde a uma variável. Para aplicar o PCA corretamente, é necessário que os dados estejam
centralizados — isto é, cada variável deve ter média zero. Na prática, isso é feito subtraindo a
média de cada coluna da matriz X. Denotando por µj =

1
n ∑n

i=1 Xij a média da j-ésima coluna,
construímos uma nova matriz X̃ ∈ Rn×p cujos elementos são dados por

X̃ij = Xij − µj.

Essa centralização garante que a matriz de covariância empírica S = 1
n X̃⊤X̃ capture apenas a

variabilidade em torno da média, o que é essencial para que o PCA identifique corretamente as
direções principais de variação dos dados.

Aplicando a decomposição espectral à matriz S, obtemos

S = QΛQ⊤,

onde as colunas de Q são autovetores ortonormais (as componentes principais) e os valores em Λ
são os autovalores não negativos que indicam a variância dos dados ao longo dessas direções.

Projetar os dados X nas direções dadas pelas colunas de Q resulta em novas variáveis não
correlacionadas, ordenadas de forma que as primeiras carregam a maior parte da variância dos
dados. Isso nos permite realizar redução de dimensionalidade: ao manter apenas os k < p
primeiros autovetores, obtemos uma representação aproximada dos dados que preserva a maior
parte de sua variabilidade.

10.1. ANÁLISE DE COMPONENTES PRINCIPAIS 101

Assim, o PCA pode ser entendido como uma mudança de base ortogonal para uma nova
coordenada onde as direções estão alinhadas com as elipses de nível da matriz de covariância. A
deformação elíptica observada na decomposição espectral se torna, neste contexto, a ferramenta
que revela quais são as direções de maior variação — e, portanto, de maior interesse estatístico
— na distribuição dos dados.

Os autovalores obtidos na decomposição espectral da matriz de covariância S = 1
n X̃⊤X̃ re-

presentam a quantidade de variância dos dados explicada por cada componente principal. Mais
precisamente, se λ1, . . . , λp são os autovalores ordenados de forma decrescente, então λ1 indica
a variância dos dados ao longo da primeira direção principal (isto é, a direção que maximiza a
variância), λ2 a variância na segunda direção mais importante, e assim por diante.

10.1.1 Variância explicada

Seja X̃ ∈ Rn×p a matriz de dados centralizada, isto é, cada coluna tem média zero. A matriz de
covariância empírica dos dados é então

S =
1
n

X̃⊤X̃.

Essa matriz S é simétrica e semi-definida positiva, e representa as covariâncias entre todas as
variáveis. Em particular, sua entrada Sjj na diagonal é a variância da variável j-ésima:

Sjj =
1
n

n

∑
i=1

X̃2
ij ≈ Var(Xj).

O traço de S, que é a soma dos elementos diagonais, satisfaz

tr(S) =
p

∑
j=1

Sjj =
p

∑
j=1

Var(Xj),

ou seja, o traço de S é a soma das variâncias das p variáveis.
Por outro lado, como S é simétrica, ela admite uma decomposição espectral S = QΛQ⊤, onde

Λ = diag(λ1, . . . , λp) contém os autovalores de S. Um fato fundamental da álgebra linear garante

102 CAPÍTULO 10. REDUÇÃO DE DIMENSÃO

que o traço de uma matriz é igual à soma de seus autovalores:

tr(S) =
p

∑
j=1

λj.

Portanto, a soma dos autovalores de S é exatamente igual à soma das variâncias das variáveis
originais. Isso mostra que os autovalores representam como a variância total dos dados é distri-
buída entre as diferentes direções principais.

O valor total da variância nos dados é dado pela soma dos autovalores,

Var total =
p

∑
j=1

λj,

e a proporção da variância explicada pela k-ésima componente principal é

Proporção explicada por k =
λk

∑
p
j=1 λj

.

Essas proporções fornecem uma medida quantitativa de quanta informação (no sentido de va-
riabilidade dos dados) está concentrada em cada direção principal. Isso permite, por exemplo,
decidir quantas componentes manter em uma redução de dimensionalidade: basta escolher o
menor k tal que a soma das k primeiras proporções seja suficientemente próxima de 1 (por exem-
plo, 90% ou 95%).

Essa interpretação dos autovalores como variância explicada torna o PCA não apenas uma
ferramenta geométrica, mas também estatística, permitindo compreender e resumir conjuntos de
dados de alta dimensão com base em sua estrutura de variação.

10.1.2 Decomposição em valores singulares

Seja A ∈ Rn×p uma matriz qualquer. Consideramos a matriz simétrica A⊤A ∈ Rp×p, que é
semi-definida positiva. Como tal, ela admite uma decomposição espectral da forma

A⊤A = VΛV⊤,

onde V ∈ Rp×p é ortogonal e Λ = diag(λ1, . . . , λp) contém os autovalores reais e não negativos
de A⊤A, que podemos ordenar como λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λp, com r = rank(A).

Definimos os valores singulares de A como σj =
√

λj para j = 1, . . . , r. Os vetores vj ∈ Rp

(colunas de V) satisfazem
A⊤Avj = λjvj.

Multiplicando ambos os lados por A, obtemos:

AA⊤(Avj) = A(A⊤Avj) = λj Avj.

Ou seja, Avj é um autovetor de AA⊤ associado ao mesmo autovalor λj. Definimos

uj =
Avj

σj
,

10.1. ANÁLISE DE COMPONENTES PRINCIPAIS 103

o que é bem definido pois σj > 0. Assim, os vetores uj ∈ Rn têm norma unitária e satisfazem:

Avj = σjuj e A⊤uj = σjvj.

Tomando Ur = [u1 · · · ur] ∈ Rn×r, Vr = [v1 · · · vr] ∈ Rp×r e Σr = diag(σ1, . . . , σr) ∈ Rr×r,
temos a fatoração

A = UrΣrV⊤r .

Essa é a forma reduzida da decomposição em valores singulares (SVD). Podemos completá-la
para obter a SVD completa estendendo Ur e Vr para bases ortonormais completas U ∈ Rn×n e
V ∈ Rp×p, e definindo Σ ∈ Rn×p como a matriz retangular que contém Σr no canto superior
esquerdo e zeros no restante. Com isso, temos:

A = UΣV⊤.

Logo, a SVD pode ser rigorosamente derivada a partir da decomposição espectral de A⊤A
e da relação AA⊤(Avj) = λj Avj, o que mostra que os vetores Avj também são autovetores de
AA⊤.

Intuição geométrica

Consideramos uma matriz real A ∈ Rn×p. A imagem da esfera unitária S = {x ∈ Rp : ∥x∥ = 1}
sob a transformação linear A é uma superfície chamada hiperelipse em Rn. Essa superfície é obtida
ao esticar a esfera unitária em até r = rank(A) direções ortogonais. As direções e os fatores de
estiramento são determinados pelos valores singulares de A.

Figura 10.1: Retirado de (Trefethen and Bau, 1997).

Mais precisamente, os valores singulares σ1 ≥ σ2 ≥ · · · ≥ σr > 0 correspondem aos com-
primentos dos semieixos principais da hiperelipse. Para cada j = 1, . . . , r, temos que Avj = σjuj,
onde:

• vj ∈ Rp é o j-ésimo vetor singular à direita, ou seja, uma direção unitária na entrada que é
alongada por A;

104 CAPÍTULO 10. REDUÇÃO DE DIMENSÃO

• uj ∈ Rn é o j-ésimo vetor singular à esquerda, que indica a direção de saída correspon-
dente.

Essas relações podem ser organizadas matricialmente como

AVr = UrΣr,

onde:

• Vr = [v1 · · · vr] ∈ Rp×r,

• Ur = [u1 · · · ur] ∈ Rn×r,

• Σr = diag(σ1, . . . , σr) ∈ Rr×r.

Como Vr tem colunas ortonormais, podemos escrever

A = UrΣrV⊤r ,

que é a forma reduzida da decomposição em valores singulares (SVD). A forma completa é
obtida ao estender Ur e Vr para bases ortonormais completas:

A = UΣV⊤,

onde:

• U ∈ Rn×n é ortogonal (isto é, U⊤U = I);

• V ∈ Rp×p é ortogonal;

• Σ ∈ Rn×p é uma matriz diagonal retangular, com os valores singulares σ1 ≥ σ2 ≥ · · · ≥
σr > 0 nas primeiras entradas da diagonal, e zeros no restante.

Teorema 4 (Teorema da existência e unicidade da SVD). Toda matriz A ∈ Rn×p admite uma de-
composição da forma A = UΣV⊤. Os valores singulares σj são unicamente determinados. Se os valores
singulares forem distintos, então os vetores singulares à esquerda uj e à direita vj também são unicamente
determinados a menos de sinais.

Figura 10.2: Ilustração do SVD. Retirado de (Trefethen and Bau, 1997).

Exercício 16. Prove que o posto de uma matriz A é igual ao número r de valores singulares não nulos.

Exercício 17. Prove que a imagem de uma matriz Im(A) = ⟨u1, · · · , ur⟩ e seu núcleo N(A) = ⟨vr+1, · · · , vr⟩.

Exercício 18. Encontre uma expressão para N(A)⊥ e uma para Im(A⊤) utilizando a decomposição SVD
de A.

10.1. ANÁLISE DE COMPONENTES PRINCIPAIS 105

SVD e PCA

Seja X ∈ Rn×p uma matriz de dados, onde cada linha corresponde a uma observação e cada
coluna a uma variável. Suponha que X já foi centralizada, ou seja, a média de cada coluna é zero.

A matriz de covariância empírica dos dados é dada por

S =
1
n

X⊤X.

Como S é simétrica e semi-definida positiva, ela admite uma decomposição espectral da forma
S = VΛV⊤, onde as colunas de V ∈ Rp×p são os autovetores de S, chamados de componentes
principais, e Λ = diag(λ1, . . . , λp) contém os autovalores não negativos correspondentes, que
representam a variância dos dados ao longo dessas direções.

Por outro lado, podemos aplicar a decomposição em valores singulares (SVD) diretamente à
matriz X:

X = UΣV⊤,

com Σ = diag(σ1, . . . , σr) ∈ Rn×p, onde σj são os valores singulares de X, e r = rank(X). Então:

X⊤X = VΣ⊤ΣV⊤,

de modo que:

S =
1
n

X⊤X = V
(

1
n

Σ⊤Σ
)

V⊤.

Isso mostra que os autovalores de S são λj = σ2
j /n, e os autovetores de S são exatamente os

vetores singulares à direita de X, isto é, as colunas de V. Portanto, a análise de componentes
principais pode ser realizada a partir da SVD da matriz de dados centralizada: os vetores prin-
cipais são os vj, e as variâncias explicadas correspondem aos quadrados dos valores singulares
normalizados por n.

Aproximações de posto baixo

Seja A ∈ Rn×p e considere sua decomposição em valores singulares:

A =
r

∑
j=1

σjujv⊤j ,

onde r = rank(A), os vetores uj ∈ Rn e vj ∈ Rp são ortonormais, e os valores singulares
satisfazem σ1 ≥ · · · ≥ σr > 0. Para cada ν ∈ {0, 1, . . . , r}, define-se a aproximação de posto ν

como

Aν =
ν

∑
j=1

σjujv⊤j .

Teorema 5. Seja A ∈ Rn×p uma matriz qualquer, e Aν a aproximação de posto ν definida acima. Então,
para todo ν, temos:

∥A− Aν∥2 = inf
B∈Rn×p

rank(B)≤ν

∥A− B∥2 = σν+1,

com a convenção de que σν+1 = 0 se ν = min(n, p).

106 CAPÍTULO 10. REDUÇÃO DE DIMENSÃO

Esse resultado mostra que a melhor aproximação de A por uma matriz de posto no máximo
ν, no sentido da norma espectral, é obtida truncando sua decomposição em valores singulares
e mantendo apenas os ν primeiros termos. Além disso, o erro de aproximação é exatamente o
próximo valor singular descartado, ou seja, a maior deformação não capturada por Aν.

Quando A = X é uma matriz de dados centralizada, com X ∈ Rn×p, a decomposição X =

UΣV⊤ pode ser usada para obter as componentes principais (PCA). O truncamento da SVD em
ν termos fornece a matriz Xν = UνΣνV⊤ν , que é a projeção dos dados nas ν primeiras direções
principais. O teorema acima garante que Xν é a melhor representação possível dos dados entre
todas as matrizes de posto ν, no sentido de minimizar a norma espectral do erro:

∥X− Xν∥2 = σν+1.

Essa propriedade justifica o uso do PCA como uma técnica de redução de dimensionalidade com
controle explícito sobre a perda de informação.

10.1.3 Aplicação: redução de dimensão

Como exemplo prático de aplicação da análise de componentes principais (PCA), consideramos o
conjunto de dados digits, disponível na biblioteca scikit-learn. Esse conjunto contém imagens
de dígitos manuscritos de 0 a 9, cada uma representada por uma matriz 8× 8 de pixels, ou seja,
um vetor em R64.

A matriz de dados X ∈ R1797×64 contém n = 1797 observações, cada uma correspondente
a uma imagem achatada com p = 64 variáveis. Aplicamos o PCA a X após centralizar suas
colunas, e projetamos os dados nas duas primeiras componentes principais.

O resultado é uma nuvem de pontos em R2, onde cada ponto corresponde a uma imagem
original e está colorido de acordo com o dígito representado. Observamos que, mesmo após a
redução para duas dimensões, as diferentes classes de dígitos ainda apresentam agrupamentos
visivelmente distintos. Isso evidencia que as duas primeiras componentes principais capturam
uma quantidade substancial da estrutura de variabilidade dos dados.

10.1. ANÁLISE DE COMPONENTES PRINCIPAIS 107

Essa aplicação ilustra como o PCA pode ser utilizado para:

• Reduzir a dimensionalidade de dados de alta dimensão com mínima perda de informação;

• Visualizar a estrutura interna dos dados em duas ou três dimensões;

• Explorar padrões e possíveis agrupamentos em dados não rotulados.

10.1.4 Aplicação: compressão de dados

Para ilustrar uma aplicação prática da decomposição SVD, utilizamos uma imagem em tons de
cinza e reconstruímos aproximações de posto reduzido variando o número de componentes k.
A cada valor de k, reconstruímos a imagem utilizando apenas os k maiores valores singulares e
seus vetores associados. O objetivo é verificar até que ponto é possível reduzir a quantidade de
informação armazenada sem comprometer significativamente a qualidade visual da imagem.

Cada imagem reconstruída foi salva no formato PNG, e em seguida medimos seu tamanho em
kilobytes. Isso nos permite avaliar empiricamente o impacto de k no espaço ocupado em disco,
levando em conta também a compactação realizada pelo formato PNG. Além disso, comparamos
esses tamanhos com o da imagem original, também salva em PNG.

Os resultados mostram que para valores baixos de k, a imagem perde detalhes, mas o tama-
nho do arquivo é drasticamente reduzido — evidenciando compressão com perda. À medida
que aumentamos k, a imagem se aproxima da original em termos visuais, e o tamanho do ar-
quivo cresce progressivamente. A curva gerada revela o ponto a partir do qual adicionar mais
componentes singulares tem impacto marginal na qualidade visual, mas aumenta o tamanho do
arquivo.

108 CAPÍTULO 10. REDUÇÃO DE DIMENSÃO

Essa aplicação demonstra como a SVD pode ser usada como um método de compressão
controlável: quanto menor o k, maior a compressão (com mais perda de informação), e quanto
maior o k, melhor a qualidade visual, com custo maior de armazenamento.

10.2 Projeções aleatórias

Seja U ∈ Rp×p uma matriz ortogonal, ou seja, satisfaz U⊤U = I. Nesse caso, para qualquer vetor
x ∈ Rp, temos:

∥Ux∥2 = x⊤U⊤Ux = x⊤x = ∥x∥2.

Ou seja, transformações lineares ortogonais preservam normas e ângulos. Geometricamente, isso
significa que U é uma rotação (ou rotação seguida de reflexão) do espaço, e não altera distâncias
entre pontos.

Essa propriedade sugere que, ao projetar dados em uma base ortonormal (ou aproximada-
mente ortonormal), podemos manter a estrutura geométrica essencial. Mais ainda, em espaços
de alta dimensão, ocorre um fenômeno conhecido como concentração da medida, que implica que,
com alta probabilidade, dois vetores x, y ∈ Rp escolhidos ao acaso estarão quase ortogonais, ou
seja, o cosseno do ângulo entre eles será próximo de zero. Intuitivamente, isso significa que, à
medida que a dimensão cresce, o espaço se torna "mais esférico", e vetores aleatórios tendem a
se distribuir de forma aproximadamente ortogonal.

A preservação de normas por matrizes ortogonais motiva a busca por projeções lineares
que preservem, ao menos aproximadamente, distâncias euclidianas. De fato, se U ∈ Rp×p é
ortogonal, então ∥Ux∥ = ∥x∥ para todo x ∈ Rp, e ∥Ux−Uy∥ = ∥x− y∥ para todos os pares x, y,
ou seja, a transformação preserva completamente a geometria euclidiana.

Esse tipo de preservação exata só é possível quando a projeção acontece em todo o espaço Rp,
mas uma pergunta natural é se existe alguma forma de preservar aproximadamente as distâncias
quando projetamos para um subespaço de dimensão k≪ p.

Intuitivamente, a resposta é positiva se nos restringirmos a um conjunto finito de vetores. A
ideia central é que, em alta dimensão, vetores aleatórios tendem a ser quase ortogonais. Mais
precisamente, se sorteamos dois vetores x, y ∈ Rp de maneira independente, com entradas ∼
N (0, 1), então o ângulo entre eles tende a ser próximo de π/2, e a norma de x − y concentra
em torno de

√
2p. Esse fenômeno de concentração da medida sugere que vetores aleatórios bem

escolhidos podem servir como base aproximadamente ortonormal com alta probabilidade.

Esse insight leva à ideia de gerar uma matriz aleatória R ∈ Rk×p com entradas i.i.d. N (0, 1),
e definir a aplicação linear

f (x) =
1√
k

Rx.

O fator 1√
k

garante que a variância da norma de f (x) não cresça artificialmente com k. Pode-
mos então perguntar: essa projeção aleatória f preserva as distâncias entre vetores de maneira
controlada?

A resposta é afirmativa, como garantido pelo seguinte resultado:

10.2. PROJEÇÕES ALEATÓRIAS 109

Teorema 6. Seja 0 < ε < 1 e n ∈ N. Para qualquer conjunto fixo de n vetores x1, . . . , xn ∈ Rp, existe
uma aplicação linear f : Rp → Rk com

k ≥ C
log n

ε2

para uma constante absoluta C, tal que, para todos os pares i, j ∈ {1, . . . , n},

(1− ε)∥xi − xj∥2 ≤ ∥ f (xi)− f (xj)∥2 ≤ (1 + ε)∥xi − xj∥2.

Além disso, tal aplicação pode ser escolhida como uma projeção aleatória do tipo f (x) = 1√
k
Rx, onde

R ∈ Rk×p tem entradas independentes N (0, 1).

Esse resultado mostra que é possível reduzir a dimensionalidade de um conjunto finito de
pontos de alta dimensão para um espaço de dimensão apenas O(log n), mantendo as distâncias
aproximadamente preservadas com erro relativo controlado por ε. Essa técnica é conhecida como
projeção aleatória, e tem aplicações em diversas áreas, como:

• Compressão de dados de alta dimensão;

• Aceleração de algoritmos baseados em distâncias, como k-NN;

• Redução de custo computacional em aprendizado de máquina;

• Preservação de estrutura geométrica em embeddings.

Na prática, a matriz R pode ser gerada uma única vez, aplicada a todos os vetores de interesse,
e fornece uma transformação linear eficiente e universal. Embora a projeção seja aleatória, o
resultado acima garante que, com alta probabilidade, ela funcionará corretamente — desde que
a dimensão do subespaço k seja suficientemente grande em relação a log n.

10.2.1 Aplicação

Como exemplo prático da aplicação do teorema de preservação de distâncias por projeções ale-
atórias, consideramos novamente o conjunto de dados digits, composto por imagens de dígitos
manuscritos, cada uma representada por um vetor em R64. Nosso objetivo é reduzir a dimen-
sionalidade desses dados para R2, preservando aproximadamente a estrutura geométrica do
conjunto, mas agora utilizando uma transformação aleatória.

Construímos uma projeção aleatória f : R64 → R2 da forma

f (x) =
1√
2

Rx,

onde R ∈ R2×64 tem entradas independentes Rij ∼ N (0, 1). Cada vetor x ∈ R64 é então projetado
em um vetor f (x) ∈ R2, e essa transformação é aplicada a todas as amostras do conjunto.

O resultado é uma nuvem de pontos em duas dimensões, onde cada ponto representa uma
imagem projetada e é colorido de acordo com o dígito correspondente. Apesar da projeção
ser inteiramente aleatória, ainda é possível observar agrupamentos e certa separação entre as
diferentes classes, o que evidencia que as relações geométricas entre os dados foram, em parte,
preservadas.

110 CAPÍTULO 10. REDUÇÃO DE DIMENSÃO

Esse experimento ilustra a aplicabilidade prática do teorema de preservação de distâncias:
mesmo com uma redução drástica da dimensão de 64 para 2, a projeção aleatória preserva, com
razoável fidelidade, a estrutura global dos dados. Isso torna tais projeções úteis em tarefas como
visualização, aceleração de algoritmos e pré-processamento para métodos de aprendizado de
máquina em ambientes de alta dimensão.

10.3 t-SNE

Uma técnica bastante utilizada para visualização de dados de alta dimensão é o t-distributed
Stochastic Neighbor Embedding (t-SNE). Ao contrário do PCA e das projeções aleatórias, que são
transformações lineares, o t-SNE é um método não linear, projetando dados de alta dimensão
em duas ou três dimensões de modo que as relações de vizinhança local entre os pontos sejam
preservadas.

A ideia central do t-SNE é transformar distâncias euclidianas entre pontos de alta dimensão
em probabilidades que representam a semelhança entre pares de pontos. Mais precisamente,
dados pontos x1, . . . , xn ∈ Rp, o algoritmo define, para cada par (i, j), a probabilidade condicional

Pj|i =
exp

(
−∥xi − xj∥2/2σ2

i
)

∑k ̸=i exp
(
−∥xi − xk∥2/2σ2

i

) ,

onde σi é ajustado automaticamente de modo que a entropia da distribuição Pj|i reflita uma
perplexidade pré-definida. A matriz P de semelhanças simétricas é então definida por:

Pij =
Pj|i + Pi|j

2n
.

No espaço de baixa dimensão, y1, . . . , yn ∈ R2, o t-SNE define uma distribuição de semelhança
Qij entre pares usando uma distribuição de cauda mais pesada (distribuição de Student com um

10.3. T-SNE 111

grau de liberdade, também chamada de Cauchy):

Qij =

(
1 + ∥yi − yj∥2)−1

∑k ̸=l (1 + ∥yk − yl∥2)−1 .

O algoritmo então encontra os vetores yi ∈ R2 que minimizam a divergência de Kull-
back–Leibler entre as distribuições P e Q:

KL(P∥Q) = ∑
i ̸=j

Pij log
(

Pij

Qij

)
.

Como o foco do t-SNE é preservar relações locais, ou seja, quais pontos são próximos uns dos
outros, ele é especialmente eficaz para revelar agrupamentos (clusters) e separações em dados
que estão em variedades não lineares. Em contrapartida, o método não tenta preservar distâncias
globais — por isso, as distâncias entre grupos no espaço reduzido podem não refletir relações
verdadeiras no espaço original.

Dessa forma, o t-SNE é particularmente útil como ferramenta de visualização exploratória,
ajudando a identificar estruturas internas nos dados, mesmo quando essas estruturas não são
acessíveis por métodos lineares como o PCA.

10.3.1 Aplicação 1

Aplicamos o método t-SNE ao conjunto de dados digits, composto por imagens de dígitos
manuscritos representadas por vetores em R64. O objetivo foi reduzir essa representação para
duas dimensões de forma que as relações de vizinhança entre os pontos fossem preservadas.

Ao contrário de técnicas lineares como o PCA, o t-SNE busca manter as proximidades locais
entre os dados. Ele constrói uma distribuição de probabilidades que mede a similaridade entre
pares de pontos no espaço original e outra no espaço reduzido, e encontra uma projeção que
minimiza a divergência entre essas duas distribuições.

O resultado é uma visualização bidimensional onde os pontos associados a diferentes dígitos
tendem a formar agrupamentos bem definidos. Isso mostra que, mesmo sem conhecer os rótulos,

112 CAPÍTULO 10. REDUÇÃO DE DIMENSÃO

o t-SNE consegue capturar a estrutura interna dos dados e separar classes de forma qualitativa.
Essa abordagem é especialmente útil para visualização exploratória de dados de alta dimensão.

Capítulo 11

K-Médias

O agrupamento por K-médias é uma abordagem simples e elegante para particionar um con-
junto de dados em K grupos distintos e não sobrepostos. Para aplicar o K-médias, é necessário
especificar previamente o número de grupos K; então o algoritmo atribui cada observação exa-
tamente a um dos K grupos. A Figura 12.7 mostra os resultados obtidos ao aplicar o método de
K-médias em um conjunto simulado com 150 observações em duas dimensões, utilizando três
valores diferentes de K.

O procedimento de agrupamento por K-médias decorre de um problema matemático sim-
ples e intuitivo. Começamos definindo a notação. Seja C1, . . . , CK o conjunto dos índices das
observações pertencentes a cada grupo. Estes conjuntos satisfazem duas propriedades:

• C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , n}. Ou seja, cada observação pertence a pelo menos um dos K
grupos.

• Ck ∩ Ck′ = ∅ para todo k ̸= k′. Em outras palavras, os grupos são não sobrepostos: ne-
nhuma observação pertence a mais de um grupo.

Se a i-ésima observação pertence ao grupo k, então i ∈ Ck. A ideia por trás do agrupamento
por K-médias é que um bom agrupamento é aquele em que a variação intra-grupo é a menor
possível. A variação intra-grupo para o grupo Ck é uma medida W(Ck) da diferença entre as
observações dentro do grupo. Assim, queremos resolver o seguinte problema de otimização:

min
C1,...,CK

{
K

∑
k=1

W(Ck)

}
. (11.1)

Em palavras, a fórmula acima diz que queremos particionar as observações em K grupos de
modo que a variação total intra-grupo, somada em todos os K grupos, seja a menor possível.

Resolver o problema acima parece uma ideia razoável, mas para torná-la executável, precisa-
mos definir precisamente a variação intra-grupo. Existem diversas maneiras possíveis de fazer
isso, mas a mais comum é usar a distância euclidiana ao quadrado. Isto é, definimos:

W(Ck) =
1
|Ck| ∑

i,i′∈Ck

p

∑
j=1

(xij − xi′ j)
2, (11.2)

113

114 CAPÍTULO 11. K-MÉDIAS

onde |Ck| denota o número de observações no grupo k. Em outras palavras, a variação intra-
grupo para o grupo k é a soma de todas as distâncias euclidianas ao quadrado entre pares de
observações dentro do grupo k, dividida pelo número total de observações no grupo.

Combinando as equações anteriores, obtemos o problema de otimização que define o agru-
pamento por K-médias:

min
C1,...,CK

{
K

∑
k=1

1
|Ck| ∑

i,i′∈Ck

p

∑
j=1

(xij − xi′ j)
2

}
. (11.3)

Esse problema de otimização visa particionar as observações em K grupos de modo que a
soma total da variação intra-grupo (em todos os grupos) seja a menor possível. No entanto,
resolver esse problema diretamente é muito difícil, pois há aproximadamente Kn maneiras de
particionar n observações em K grupos.

Felizmente, existe um algoritmo simples que encontra uma boa solução local — uma boa
solução, embora não necessariamente ótima — para o problema. Esse método é apresentado no
Algoritmo:

Algorithm 8 K-médias
1. Atribua aleatoriamente um número de 1 a K para cada observação (isto é, atribuições inici-

ais de grupo).

2. Repita até que as atribuições de grupo não mudem mais:

(a) Para cada um dos K grupos, calcule o centróide, isto é, o vetor de médias das p variáveis
dentro do grupo.

(b) Atribua cada observação ao grupo cujo centróide está mais próximo (usando distância
euclidiana).

O algoritmo acima garante que o valor da função objetivo irá diminuir a cada passo. Isso
pode ser entendido por meio da seguinte identidade:

1
|Ck| ∑

i,i′∈Ck

p

∑
j=1

(xij − xi′ j)
2 = 2 ∑

i∈Ck

p

∑
j=1

(xij − x̄kj)
2, (11.4)

onde x̄kj =
1
|Ck | ∑i∈Ck

xij é a média da j-ésima variável no grupo Ck.

No passo 2(a), os centróides de cada grupo são essas médias que minimizam a soma dos
desvios ao quadrado; e no passo 2(b), ao realocar as observações para os grupos mais próximos,
o valor da função objetivo só pode diminuir.

Isso significa que, ao executar o algoritmo, o agrupamento obtido vai melhorar continuamente
até que o resultado pare de mudar. Quando isso acontece, atingimos um mínimo local, ou seja, a
função objetivo não irá mais diminuir.

O nome K-médias vem do fato de que, no passo 2(a), os centróides dos grupos são calculados
como a média das observações atribuídas a cada grupo.

115

Como o algoritmo encontra apenas um mínimo local e não global, o resultado obtido pode
depender bastante da atribuição inicial aleatória dos grupos (passo 1). Por isso, é importante exe-
cutar o algoritmo várias vezes com diferentes configurações iniciais e escolher a melhor solução
(aquela com menor valor da função objetivo).

116 CAPÍTULO 11. K-MÉDIAS

Capítulo 12

Predição conforme

Em problemas de regressão, é comum que se deseje mais do que uma predição pontual para a
variável resposta. Idealmente, gostaríamos de quantificar a incerteza associada a cada predição
por meio de um intervalo que contenha o valor real com alta probabilidade. Métodos estatísticos
clássicos constroem tais intervalos sob suposições paramétricas, como linearidade, normalidade
dos erros e homocedasticidade. No entanto, essas hipóteses raramente são verificadas na prática,
o que pode comprometer a validade dos intervalos obtidos.

A predição conforme (conformal prediction) é uma abordagem moderna que permite cons-
truir intervalos de predição com garantias de cobertura válidas para amostras finitas, sem fazer
suposições sobre a distribuição dos erros ou sobre a forma funcional da relação entre variáveis.
A única suposição necessária para garantir a validade dos intervalos é que os dados sejam per-
mutáveis (exchangeable), isto é, que a distribuição conjunta das observações seja invariante à
ordem em que elas aparecem. Essa hipótese é mais fraca do que assumir que os dados são in-
dependentes e identicamente distribuídos (i.i.d.), embora na prática os dois conceitos coincidam
em muitos contextos.

Ao longo destas notas, assumiremos que os dados são i.i.d. Essa hipótese é mais restritiva do
que a de permutabilidade, mas é suficiente para garantir a validade dos métodos que apresenta-
remos, além de permitir uma apresentação mais direta e familiar do ponto de vista probabilístico.

12.1 O método split conformal

A principal ideia da predição conforme é transformar qualquer medida heurística de incerteza
fornecida por um modelo preditivo em um conjunto de predição com garantias de validade finita.
A abordagem é agnóstica ao tipo de modelo e ao tipo de problema (classificação ou regressão) e
se baseia apenas na suposição de permutabilidade dos dados.

O método consiste em quatro etapas principais:

1. Treine um modelo preditivo utilizando uma parte dos dados, chamada de conjunto de
treinamento. Este modelo pode ser qualquer estimador ĝ que produza predições pontuais.

2. Defina uma função de escore (ou não conformidade) s(x, y) ∈ R, que quantifica o quanto
a predição do modelo ĝ(x) discorda do valor observado y. Em problemas de regressão,

117

118 CAPÍTULO 12. PREDIÇÃO CONFORME

uma escolha comum é s(x, y) = |y− ĝ(x)|.

3. Utilize um conjunto de calibração com n pares (Xi, Yi) independentes para calcular os
escores si = s(Xi, Yi), i = 1, . . . , n. A partir desses escores, defina o quantil ajustado:

q̂ = inf

{
q :

1
n

n

∑
i=1

1{si ≤ q} ≥ (n + 1)(1− α)

n

}
.

4. Forme o conjunto de predição para uma nova entrada Xtest como

C(Xtest) = {y ∈ R : s(Xtest, y) ≤ q̂} .

Esse conjunto C(Xtest) satisfaz a propriedade de validade marginal:

P (Ytest ∈ C(Xtest)) ≥ 1− α,

desde que os dados utilizados sejam i.i.d. (ou, mais geralmente, permutáveis).
A beleza do método está em sua simplicidade e generalidade: qualquer modelo preditivo

pode ser utilizado, e não é necessário conhecer a distribuição dos erros. A única exigência é a
definição de uma função s(x, y) que reflita o grau de "não conformidade"entre x e y.

12.2 Conformalized Quantile Regression

O método de Conformalized Quantile Regression (CQR) é uma extensão natural da predição con-
forme para problemas de regressão com saídas contínuas. Ele parte da ideia de ajustar direta-
mente intervalos de predição via regressão quantílica, mas com uma etapa adicional de calibração
que assegura validade marginal finita.

A ideia central é utilizar um modelo para estimar os quantis inferiores e superiores da variável
resposta condicionalmente à entrada. Por exemplo, um modelo de regressão quantílica pode
fornecer estimativas t̂α/2(x) e t̂1−α/2(x), de modo que

P(Y ≤ t̂α/2(x)) ≈ α/2 e P(Y ≥ t̂1−α/2(x)) ≈ α/2.

No entanto, na prática, as estimativas desses quantis podem ser imprecisas. Para resolver
isso, o método CQR utiliza uma etapa de conformalização, que ajusta dinamicamente o intervalo
com base em um conjunto de calibração.

Etapas do método CQR

1. Treine um modelo de regressão quantílica para estimar os quantis t̂α/2(x) e t̂1−α/2(x) da
distribuição condicional Y | X = x.

2. Defina a função de escore como:

s(x, y) = max
{

t̂α/2(x)− y, y− t̂1−α/2(x)
}

,

que mede a distância entre a observação y e o intervalo estimado.

12.3. PARTIÇÃO LOCAL VIA ÁRVORE DE DECISÃO 119

3. Com base no conjunto de calibração {(Xi, Yi)}n
i=1, calcule os escores si = s(Xi, Yi), e defina

o quantil ajustado:
q̂ = Quantil((n+1)(1−α)

n

) (s1, s2, . . . , sn) .

4. Para uma nova entrada x, o intervalo de predição conforme é dado por:

C(x) =
[
t̂α/2(x)− q̂, t̂1−α/2(x) + q̂

]
.

Intuitivamente, o valor q̂ corrige os possíveis erros do modelo quantílico, alargando ou estrei-
tando os intervalos de modo que o conjunto C(x) satisfaça:

P (Ytest ∈ C(Xtest)) ≥ 1− α.

Esse método combina os benefícios da regressão quantílica (que tenta capturar diretamente a
variabilidade condicional) com as garantias de validade fornecidas pela conformalização, tornando-
se uma ferramenta extremamente prática para predição confiável.

12.3 Partição local via árvore de decisão

Uma limitação do método split conformal tradicional é que os intervalos obtidos têm largura
constante (ou seja, são simétricos e invariantes em relação a x), mesmo em situações em que a
variância dos erros claramente depende da entrada. Para contornar esse problema, é possível
construir intervalos locais, ajustando sua largura conforme a região do espaço de entrada.

Uma forma simples e eficaz de obter tal adaptação é por meio de uma árvore de decisão
treinada sobre os resíduos do modelo.

1. Primeiro, dividimos os dados em três conjuntos: treino, calibração 1 e calibração 2.

2. Treinamos um modelo preditivo ĝ(x) no conjunto de treino.

3. Com os dados de calibração 1, calculamos os resíduos absolutos ri = |Yi − ĝ(Xi)|, e treina-
mos uma árvore de decisão T com Xi como entrada e ri como resposta.

120 CAPÍTULO 12. PREDIÇÃO CONFORME

4. Em seguida, aplicamos a árvore nos dados de calibração 2. Para cada folha ℓ da árvore T ,
coletamos os resíduos {ri : Xi ∈ ℓ} e calculamos o quantil ajustado q̂ℓ correspondente ao
nível 1− α.

5. Finalmente, para um novo ponto x, identificamos a folha ℓ(x) à qual ele pertence e cons-
truímos o intervalo de predição local:

C(x) = [ĝ(x)− q̂ℓ(x), ĝ(x) + q̂ℓ(x)].

Esse procedimento resulta em intervalos cuja largura varia com x, adaptando-se automati-
camente a regiões com maior ou menor variabilidade condicional. Embora a validade marginal
global continue garantida, essa abordagem pode levar a melhorias substanciais na eficiência dos
intervalos, especialmente quando a incerteza depende fortemente da entrada.

Apêndice A

Revisão

Nesta seção, faremos uma breve revisão de alguns conceitos matemáticos importantes.

A.1 Álgebra linear

Ao longo deste material, adotaremos a seguinte notação:

• n: número de observações.

• p: número de variáveis preditoras.

• xij: valor da j-ésima variável na i-ésima observação, com i = 1, . . . , n e j = 1, . . . , p.

Representamos os dados como uma matriz X ∈ Rn×p:

X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

...
. . .

...
xn1 xn2 · · · xnp

 .

Cada linha de X é um vetor xi ∈ Rp, representando as variáveis da i-ésima observação:

xi =


xi1

xi2
...

xip

 .

Também podemos considerar as colunas de X, escritas como xj ∈ Rn:

xj =


x1j

x2j
...

xnj

 .

Assim, a matriz X pode ser expressa de duas formas:

121

122 APÊNDICE A. REVISÃO

X = (x1 x2 · · · xp).

Também podemos considerar as linhas de X, escritas como xi ∈ Rp:

xi =
(

xi1 xi2 · · · xip

)
.

Assim, a matriz X pode ser expressa de duas formas:

X =


x1

x2

...
xn

 .

O símbolo T representa a transposta de vetores ou matrizes, por exemplo:

XT =


x11 x21 · · · xn1

x12 x22 · · · xn2
...

...
. . .

...
x1p x2p · · · xnp

 .

Denotamos a variável resposta (ou target) por yi, para a i-ésima observação. O vetor completo
de respostas é:

y =


y1

y2
...

yn

 .

O conjunto de dados observados é formado por pares {(x1, y1), (x2, y2), . . . , (xn, yn)}.

Exercício 19. Considere o conjunto de dados de salários, exemplificado abaixo:

Descreva quem é a matriz de dados X, quem é n, quem é p, quem é o vetor resposta y. Dica: tem uma
pegadinha.

A.1. ÁLGEBRA LINEAR 123

A.1.1 Multiplicações

Nessa seção, vamos estudar fatos importantes sobre multiplicações envolvendo matrizes. Para
mais detalhes, o leitor pode ver o excelente livro Trefethen and Bau (1997).

Matriz-vetor

Seja xj a j-ésima coluna de X, um n-vetor. Então, a equação y = Xb pode ser reescrito como:

y = Xb =
p

∑
j=1

xjbj. (A.1)

Essa equação pode ser representada esquematicamente da seguinte forma:y

 =
[

x1 x2 · · · xp

]


b1

b2
...

bp

 = b1

[
x1

]
+ b2

[
x2

]
+ · · ·+ bp

[
xp

]
.

Na equação acima, y é expresso como uma combinação linear das colunas de X. Desa forma,
podemos resumir essas diferentes descrições do produto matriz-vetor da seguinte forma. Como
matemáticos, estamos acostumados a interpretar a fórmula Xb = y como uma afirmação de que
X age sobre b para produzir y. A forma acima, por outro lado, sugere a interpretação de que b
age sobre X para produzir y.

Matriz-Matriz

Para o produto matriz-matriz B = AC, cada coluna de B é uma combinação linear das colunas de A.
Para demonstrar esse fato, começamos com a fórmula usual para produtos de matrizes. Se A é
uma matriz de dimensão ℓ× n e C é de dimensão n× p, então B será de dimensão ℓ× p, com
entradas definidas por

Bij =
n

∑
k=1

AikCkj. (A.2)

Aqui, Bij, Aik e Ckj são elementos de B, A e C, respectivamente. Escrito em termos de colunas,
o produto é

[
B1 B2 · · · Bn

]
= A

[
C1 C2 · · · Cn

]
,

que implica em:

Bj = ACj =
m

∑
k=1

Ckj Ak. (A.3)

Note que isso é só uma generalização da multiplicação anterior, já que Bj = ACj e podemo
utilizar a formulação Matriz-Vetor da seção anterior.

Um exemplo simples de um produto matriz-matriz é o produto externo. Este é o produto de
um vetor coluna u de dimensão n com um vetor linha v de dimensão p; o resultado é uma matriz
n× p de posto 1. O produto externo pode ser escrito como:

124 APÊNDICE A. REVISÃO

[
u
] [

v1 v2 · · · vn

]
=
[
v1u v2u · · · vnu

]
=


v1u1 · · · vnu1

...
. . .

...
v1um · · · vnum

 .

As colunas são todas múltiplos do mesmo vetor u e, da mesma forma, as linhas são todas
múltiplos do mesmo vetor v.

A.1.2 Mudança de base

Ao escrever o produto b = X−1y, é importante não deixar que a notação de matriz inversa
obscureça o que realmente está acontecendo! Em vez de pensar em b como o resultado da
aplicação de X−1 a y, devemos entendê-lo como o vetor único que satisfaz a equação Xb = y.

Uma coisa importante de se notar é que como XX−1y = y, então se z = X−1y, temos que:

y = ∑ zixi,

isto é, as coordenadas do vetor z = X−1y indicam os coeficientes necessários para escrever y na
base dada pelas colunas de X.

Aplicações

Com as ideias desenvolvidas nessa seção, somos capazes de desenvolver várias transformações
de forma rápida. Por exemplo, suponha que queremos uma matriz C cuja primeira coluna
é a primeira coluna de A duplicada, e as outras colunas são iguais as de A. Pela Seção de
multiplicação Matriz-Matriz, queremos então que

C1 = 2A1 + 0A2 + . . . 0An = A[2, 0, . . . , 0]T

...

Ci = Ai = A[0, 0, . . . , 1, . . . , 0]T,

logo, C = AB onde B = diag(2, 1, . . . , 1).
Suponha agora que D é igual a M, porém com a linha 3 somada com a linha 1. Note que a

gente só sabe trabalhar com operações nas colunas, então a primeira coisa é transformas linhas
em colunas, fazendo AT, logo

D1 = AT
1 + AT

3 = AT[1, 0, 1, . . . , 0]T

...

Di = AT
i = AT[0, 0, . . . , 1, . . . , 0]T.

Logo,

D = AT



1, 0, . . . , 0
0, 1, . . . , 0
1, 0, . . . , 0

...
0, 0, . . . , 1.


= AT M

A.1. ÁLGEBRA LINEAR 125

Como queremos uma expressão em termos de A, podemos fazer DT = MT A.
Ou seja, operações nas colunas de uma matriz são feitas à direita e operações com linhas são

feitas à esquerda transposta.

Exercício 20. Considere: A =

(
a b
c d

)
. Verifique que as multiplicações definidas acima de fato tem o

comportamento esperado descrito no texto.

Exercício 21. Considere: A =

(
a b
c d

)
. Calcule as multiplicações necessárias para dobrar a coluna 1

somada com menos a coluna 2 e fazer linha 2 mais o dobro da linha 1.
Faça os cálculos explícitos par amostrar que suas multiplicações estão corretas.

A.1.3 Produtos internos

Nos espaços de dimensão 2 ou 3, definimos o comprimento de um vetor x (ou seja, a distância
de sua extremidade até a origem) usando o teorema de Pitágoras. Por exemplo, no espaço R3,
temos:

∥x∥ =
√

x2
1 + x2

2 + x2
3.

Essa fórmula pode ser naturalmente estendida para qualquer dimensão n, definindo a norma
de um vetor x ∈ Rn como:

∥x∥ =
√

x2
1 + x2

2 + · · ·+ x2
n.

O termo norma é frequentemente usado como uma forma mais técnica ou refinada de se
referir ao comprimento de um vetor.

O produto interno que definimos para Rn e Cn satisfaz as seguintes propriedades fundamen-
tais:

1. Simetria (conjugada): ⟨x, y⟩ = ⟨y, x⟩; no caso real, isso equivale à simetria usual: ⟨x, y⟩ =
⟨y, x⟩;

2. Linearidade: ⟨αx + βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩, para todos os vetores x, y, z e escalares α, β;

3. Não-negatividade: ⟨x, x⟩ ≥ 0 para todo x;

4. Não-degenerescência: ⟨x, x⟩ = 0 se, e somente se, x = 0.

Seja V um espaço vetorial (real ou complexo). Um produto interno em V é uma função que
associa a cada par de vetores x, y ∈ V um escalar ⟨x, y⟩ que satisfaz as propriedades 1 a 4 acima.

No caso real, assumimos que ⟨x, y⟩ é sempre real. Já em espaços complexos, o produto
interno pode assumir valores complexos.

Chamamos de espaço com produto interno o par (V, ⟨·, ·⟩) formado por um espaço vetorial V e
um produto interno definido sobre ele. Dado um produto interno, podemos definir a norma de
um vetor por:

∥x∥ =
√
⟨x, x⟩.

126 APÊNDICE A. REVISÃO

Exemplo 3. Seja V = Rn ou Cn. Já vimos que o produto interno pode ser definido como

⟨x, y⟩ = y∗x =
n

∑
k=1

xkyk.

Esse produto interno é conhecido como o produto interno padrão em Rn ou Cn.

Ao longo do texto, usaremos a letra F para representar tanto R quanto C. Assim, qualquer
afirmação sobre o espaço Fn é válida para ambos os casos: Rn e Cn.

Exemplo 4. Recordemos que, para uma matriz quadrada A, o traço é definido como a soma dos elementos
da diagonal principal:

tr(A) :=
n

∑
k=1

ak,k.

Seja Mm×n o espaço das matrizes m× n. Definimos o produto interno de Frobenius por:

⟨A, B⟩ = tr(B∗A).

É possível verificar que esse produto interno satisfaz as propriedades 1 a 4, ou seja, é de fato um produto
interno.

Observe que:

tr(B∗A) = ∑
j,k

Aj,kBj,k,

o que mostra que esse produto interno coincide com o produto interno padrão em Cmn.

Exemplo 5. Seja V = L2([a, b]), o espaço das funções complexas mensuráveis ao quadrado integrável no
intervalo [a, b], ou seja:

L2([a, b]) =
{

f : [a, b]→ C

∣∣∣∣ ∫ b

a
| f (t)|2 dt < ∞

}
.

Definimos o produto interno entre duas funções f , g ∈ L2([a, b]) por:

⟨ f , g⟩ =
∫ b

a
f (t) g(t) dt.

Esse produto interno satisfaz as propriedades fundamentais (conjugada simetria, linearidade, não-
negatividade e não-degenerescência), tornando L2([a, b]) um espaço com produto interno.

A norma induzida por esse produto interno é:

∥ f ∥ =
(∫ b

a
| f (t)|2 dt

)1/2

.

Exercício 22. Mostre que nos exemplos acima, os produtos acima de fato satisfazem as propriedades de
produto-interno.

A seguir apresentamos alguns resultados importantes sobre produtos internos.

A.1. ÁLGEBRA LINEAR 127

Lema 1. Seja x um vetor em um espaço com produto interno V. Então x = 0 se, e somente se,

⟨x, y⟩ = 0 para todo y ∈ V. (1.1)

Corolário 1. Sejam x, y vetores em um espaço com produto interno V. A igualdade x = y vale se, e
somente se,

⟨x, z⟩ = ⟨y, z⟩ para todo z ∈ V.

Corolário 2. Sejam A, B : X → Y dois operadores lineares. Suponha que

⟨Ax, y⟩ = ⟨Bx, y⟩ para todo x ∈ X e y ∈ Y.

Então, A = B.

Um dos resultados mais importantes com relação ao produto interno é a desigualdade de
Cauchy-Schwarz:

Teorema 7 (Desigualdade de Cauchy–Schwarz). Sejam x, y vetores em um espaço com produto in-
terno. Então:

|⟨x, y⟩| ≤ ∥x∥ · ∥y∥.

Demonstração. Vamos apresentar uma demonstração que, embora não seja a mais curta, revela
bem a origem das ideias principais.

Comecemos com o caso real. Se y = 0, a desigualdade é trivial. Assim, podemos supor que
y ̸= 0. Pelas propriedades do produto interno, para qualquer escalar t temos:

0 ≤ ∥x− ty∥2 = ⟨x− ty, x− ty⟩ = ∥x∥2 − 2t⟨x, y⟩+ t2∥y∥2.

Essa desigualdade vale para todo t ∈ R, em particular para

t =
⟨x, y⟩
∥y∥2 ,

o que nos leva a:

0 ≤ ∥x∥2 − |⟨x, y⟩|2
∥y∥2 ,

ou seja,
|⟨x, y⟩|2 ≤ ∥x∥2 · ∥y∥2.

Portanto, obtemos a desigualdade desejada.
Para o caso complexo, uma das estratégias é considerar o mesmo argumento acima com t

complexo (escolhendo, por exemplo, t = ⟨x,y⟩
∥y∥2), ou então proceder de forma análoga usando:

∥x− ty∥2 = ∥x∥2 − t⟨y, x⟩ − t⟨x, y⟩+ |t|2∥y∥2.

A escolha de t = ⟨x,y⟩
∥y∥2 minimiza a expressão acima, o que nos leva novamente a:

0 ≤ ∥x∥2 − |⟨x, y⟩|2
∥y∥2 ,

128 APÊNDICE A. REVISÃO

ou seja,
|⟨x, y⟩| ≤ ∥x∥ · ∥y∥.

Esse raciocínio mostra completamente a validade da desigualdade. A justificativa anterior
serviu apenas para motivar a escolha do valor específico de t.

Lema 2 (Desigualdade triangular). Para quaisquer vetores x, y em um espaço com produto interno,
vale:

∥x + y∥ ≤ ∥x∥+ ∥y∥.

Demonstração.

∥x + y∥2 = ⟨x + y, x + y⟩
= ∥x∥2 + ∥y∥2 + ⟨x, y⟩+ ⟨y, x⟩
≤ ∥x∥2 + ∥y∥2 + 2|⟨x, y⟩|
≤ ∥x∥2 + ∥y∥2 + 2∥x∥ · ∥y∥ = (∥x∥+ ∥y∥)2.

Tomando a raiz quadrada dos dois lados, obtemos a desigualdade desejada.

Lema 3 (Identidades de polarização). Sejam x, y ∈ V. É possível recuperar o produto interno a partir
da norma usando as seguintes fórmulas:

• Se V é um espaço com produto interno real, então:

⟨x, y⟩ = 1
4
(
∥x + y∥2 − ∥x− y∥2) .

• Se V é um espaço com produto interno complexo, então:

⟨x, y⟩ = 1
4 ∑

α∈{1,−1,i,−i}
α∥x + αy∥2.

Exercício 23. Prove todos os resultados anteriores que não possuem provas.

A.1.4 Ortogonalidade

Definição 2. Dois vetores u e v são chamados ortogonais (ou também perpendiculares) se

⟨u, v⟩ = 0.

Usamos a notação u ⊥ v para indicar que os vetores são ortogonais.

Note que, se os vetores u e v forem ortogonais, então vale a seguinte identidade, conhecida
como identidade pitagórica:

∥u + v∥2 = ∥u∥2 + ∥v∥2 se u ⊥ v.

Definição 3. Dizemos que um vetor v é ortogonal a um subespaço E se v for ortogonal a todos os vetores
w ∈ E.

Analogamente, dizemos que dois subespaços E e F são ortogonais se todos os vetores de E são ortogonais
a todos os vetores de F, ou seja, ⟨e, f⟩ = 0 para todo e ∈ E e f ∈ F.

A.1. ÁLGEBRA LINEAR 129

O próximo lema mostra como verificar se um vetor é ortogonal a um subespaço gerado por
um conjunto finito de vetores.

Lema 4. Seja E o subespaço gerado pelos vetores v1, v2, . . . , vr. Então, um vetor v é ortogonal a E se, e
somente se,

v ⊥ vk, para todo k = 1, 2, . . . , r.

Definição 4. Um sistema de vetores v1, v2, . . . , vn é dito ortogonal se quaisquer dois vetores distintos do
sistema forem ortogonais entre si, ou seja,

⟨vj, vk⟩ = 0 para j ̸= k.

Se, adicionalmente, ∥vk∥ = 1 para todo k, então o sistema é chamado de ortonormal.

Lema 5 (Identidade de Pitágoras generalizada). Sejam v1, v2, . . . , vn um sistema ortogonal. Então:∥∥∥∥∥ n

∑
k=1

αkvk

∥∥∥∥∥
2

=
n

∑
k=1
|αk|2 · ∥vk∥2.

Essa fórmula assume uma forma particularmente simples no caso de sistemas ortonormais,
pois nesse caso ∥vk∥ = 1 para todo k.

Definição 5. Um sistema ortogonal (ou ortonormal) v1, v2, . . . , vn, que também forma uma base, é cha-
mado de base ortogonal (ou base ortonormal).

É claro que, se dim V = n, então qualquer sistema ortogonal de n vetores não nulos em V é
automaticamente uma base ortogonal.

Como vimos anteriormente, para encontrar as coordenadas de um vetor em uma base arbi-
trária, normalmente é necessário resolver um sistema linear. No entanto, no caso de uma base
ortogonal, isso pode ser feito de forma muito mais simples.

Suponha que v1, . . . , vn seja uma base ortogonal, e que

x = α1v1 + α2v2 + · · ·+ αnvn =
n

∑
j=1

αjvj.

Tomando o produto interno de ambos os lados com v1, obtemos:

⟨x, v1⟩ =
n

∑
j=1

αj⟨vj, v1⟩ = α1⟨v1, v1⟩ = α1∥v1∥2.

(já que ⟨vj, v1⟩ = 0 para j ̸= 1)
Portanto,

α1 =
⟨x, v1⟩
∥v1∥2 .

De forma semelhante, multiplicando ambos os lados por vk, obtemos:

⟨x, vk⟩ =
n

∑
j=1

αj⟨vj, vk⟩ = αk∥vk∥2,

130 APÊNDICE A. REVISÃO

então
αk =

⟨x, vk⟩
∥vk∥2 . (A.4)

Para encontrar as coordenadas de um vetor em uma base ortogonal, não é necessário
resolver um sistema linear — as coordenadas são dadas diretamente pela fórmula (A.4).

Retomando a definição de projeção ortogonal da geometria clássica no plano (bidimensional),
podemos introduzir a seguinte definição. Seja E um subespaço de um espaço com produto
interno V.

Definição 6. Seja v um vetor. A sua projeção ortogonal sobre o subespaço E, denotada por PEv, é o vetor
w tal que:

1. w ∈ E;

2. v−w ⊥ E.

Usaremos a notação w = PEv para representar a projeção ortogonal de v sobre E.

Teorema 8. Seja w = PEv a projeção ortogonal de v sobre o subespaço E. Então, w é o ponto de E mais
próximo de v, ou seja, para todo x ∈ E:

∥v−w∥ ≤ ∥v− x∥.

Além disso, se existir x ∈ E tal que

∥v−w∥ = ∥v− x∥,

então x = w.

Demonstração. Seja y = w− x. Então:

v− x = v−w + w− x = v−w + y.

Como v−w ⊥ E e y ∈ E, segue que v−w ⊥ y. Assim, pelo teorema de Pitágoras:

∥v− x∥2 = ∥v−w∥2 + ∥y∥2 ≥ ∥v−w∥2.

A igualdade ocorre se, e somente se, ∥y∥ = 0, ou seja, y = 0, o que implica x = w.

Proposição 1. Sejam v1, v2, . . . , vr uma base ortogonal do subespaço E. Então, a projeção ortogonal de
um vetor v sobre E é dada por:

PEv =
r

∑
k=1

αkvk, onde αk =
⟨v, vk⟩
∥vk∥2 .

Em outras palavras:

PEv =
r

∑
k=1

⟨v, vk⟩
∥vk∥2 vk. (A.5)

A.1. ÁLGEBRA LINEAR 131

Note que a fórmula dos coeficientes αk coincide com a da equação (A.4), isto é, essa fórmula
continua válida mesmo se o sistema {vk} for apenas ortogonal (e não base), pois ela projeta v
sobre o subespaço gerado pelos vetores.

Demonstração. Definimos:

w :=
r

∑
k=1

αkvk, com αk =
⟨v, vk⟩
∥vk∥2 .

Queremos mostrar que v−w ⊥ E. É é suficiente mostrar que

v−w ⊥ vk, para todo k = 1, 2, . . . , r.

Para isso, calculamos:

⟨v−w, vk⟩ = ⟨v, vk⟩ − ⟨w, vk⟩

= ⟨v, vk⟩ −
〈

r

∑
j=1

αjvj, vk

〉

= ⟨v, vk⟩ −
r

∑
j=1

αj⟨vj, vk⟩.

Como o sistema {v1, . . . , vr} é ortogonal, temos ⟨vj, vk⟩ = 0 para j ̸= k, e ⟨vk, vk⟩ = ∥vk∥2.
Logo:

⟨v−w, vk⟩ = ⟨v, vk⟩ − αk∥vk∥2 = ⟨v, vk⟩ − ⟨v, vk⟩ = 0.

Portanto, v−w ⊥ vk para todo k, e segue que v−w ⊥ E. Assim, w = PEv.

Observação 2. Retomando a definição de produto interno em Cn e Rn, podemos deduzir da fórmula (A.5)
que a matriz da projeção ortogonal PE sobre um subespaço E ⊆ Cn (ou Rn) é dada por:

PE =
r

∑
k=1

1
∥vk∥2 vkv∗k , (A.6)

onde os vetores coluna v1, v2, . . . , vr formam uma base ortogonal de E.

Ortogonalização de Gram–Schmidt

Suponha que temos um conjunto linearmente independente de vetores x1, x2, . . . , xn. O método
de Gram–Schmidt constrói a partir desse conjunto um sistema ortogonal v1, v2, . . . , vn tal que:

span(x1, x2, . . . , xn) = span(v1, v2, . . . , vn).

Além disso, para todo r ≤ n, temos:

span(x1, . . . , xr) = span(v1, . . . , vr).

O algoritmo segue os seguintes passos:

1. Defina v1 := x1. Seja E1 := span(v1).

132 APÊNDICE A. REVISÃO

2. Defina
v2 := x2 − PE1 x2 = x2 −

⟨x2, v1⟩
∥v1∥2 v1.

Seja E2 := span(v1, v2). Como x2 /∈ E1, temos v2 ̸= 0.

3. Defina
v3 := x3 − PE2 x3 = x3 −

⟨x3, v1⟩
∥v1∥2 v1 −

⟨x3, v2⟩
∥v2∥2 v2.

Seja E3 := span(v1, v2, v3).

4. Suponha que já tenhamos construído vetores ortogonais v1, . . . , vr, tais que

Er := span(v1, . . . , vr) = span(x1, . . . , xr).

Defina:

vr+1 := xr+1 −
r

∑
k=1

⟨xr+1, vk⟩
∥vk∥2 vk.

Note que xr+1 /∈ Er, então vr+1 ̸= 0.

Continuando esse processo até r = n, obtemos um sistema ortogonal de vetores v1, . . . , vn tal
que:

span(v1, . . . , vn) = span(x1, . . . , xn).

Exercício 24. Aplique o método de Gram-Schmidit para os vetores {(1, 1, 1), (0, 1, 2), (1, 0, 2)}.

3.3. Complemento ortogonal. Decomposição V = E⊕ E⊥

Definição 7. Seja E um subespaço de um espaço com produto interno V. O complemento ortogonal de E,
denotado por E⊥, é o conjunto de todos os vetores ortogonais a E:

E⊥ := {x ∈ V : x ⊥ E}.

Se x, y ⊥ E, então qualquer combinação linear αx + βy também está em E⊥ (consegue ver por
quê?). Logo, E⊥ é um subespaço.

Pela definição de projeção ortogonal, qualquer vetor v ∈ V admite uma decomposição única
da forma:

v = v1 + v2, com v1 ∈ E e v2 ⊥ E (ou seja, v2 ∈ E⊥).

Neste caso, temos v1 = PEv.
Essa afirmação pode ser escrita simbolicamente como:

V = E⊕ E⊥,

o que expressa precisamente que todo vetor admite a decomposição única acima.
A proposição a seguir mostra uma propriedade fundamental do complemento ortogonal:

Proposição 2. Seja E um subespaço. Então:

(E⊥)⊥ = E.

Exercício 25. Prove todos os resultados anteriores que não possuem provas.

A.2. PROBABILIDADE 133

A.2 Probabilidade

Um espaço de probabilidade é uma tupla composta por três elementos: o espaço amostral, o conjunto
de eventos e uma distribuição de probabilidade:

• Espaço amostral Ω: Ω é o conjunto de todos os eventos elementares ou resultados possíveis
de um experimento. Por exemplo, ao lançar um dado, Ω = {1, 2, 3, 4, 5, 6}.

• Conjunto de eventos F : F é uma σ-álgebra, ou seja, um conjunto de subconjuntos de Ω
que contém Ω e é fechado sob complementação e união enumerável (e, consequentemente,
também sob interseção enumerável). Um exemplo de evento é: “o dado mostra um número
ímpar”.

• Distribuição de probabilidade P: P é uma função que associa a cada evento de F um
número em [0, 1], tal que P[Ω] = 1, P[∅] = 0 e, para eventos mutuamente exclusivos
A1, . . . , An, temos:

P [A1 ∪ · · · ∪ An] =
n

∑
i=1

P[Ai].

A distribuição de probabilidade discreta associada ao lançamento de um dado justo pode ser
definida como P[Ai] = 1/6 para i ∈ {1, . . . , 6}, onde Ai é o evento “o dado mostra o valor i”.

A.2.1 Variáveis aleatórias

Uma variável aleatória X é uma função X : Ω → R mensurável, ou seja, tal que para qualquer
intervalo I, o subconjunto {ω ∈ Ω : X(ω) ∈ I} pertence ao conjunto de eventos.

A função de massa de probabilidade de uma variável aleatória discreta X é a função x 7→ P[X =

x].
Uma distribuição é dita absolutamente contínua quando possui uma função densidade de probabi-

lidade f associada, tal que, para todo a, b ∈ R:

P[a ≤ X ≤ b] =
∫ b

a
f (x)dx.

Exemplo 6 (Binomial). Uma variável aleatória X segue uma distribuição binomial B(n, p) com n ∈ N

e p ∈ [0, 1] se, para k ∈ {0, 1, . . . , n},

P[X = k] =
(

n
k

)
pk(1− p)n−k.

Exemplo 7 (Uniforme). Uma variável aleatória X segue uma distribuição uniforme U(a, b) no intervalo
(a, b) se,

f (x) =

 1
b−a para a ≤ x ≤ b

0 caso contrário.

134 APÊNDICE A. REVISÃO

Exemplo 8 (Normal). Uma variável aleatória X segue uma distribuição normal N(µ, σ2) com µ ∈ R e
σ > 0 se sua densidade for dada por:

f (x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

A distribuição normal padrão é N(0, 1), com média zero e variância unitária.

Exemplo 9 (Laplace). Uma variável aleatória X segue uma distribuição de Laplace com parâmetro de
localização µ ∈ R e parâmetro de escala b > 0 se sua densidade for:

f (x) =
1
2b

exp
(
−|x− µ|

b

)
.

A.2.2 Probabilidade condicional e independência

A probabilidade condicional do evento A dado o evento B é definida como a razão entre a
probabilidade da interseção A ∩ B e a probabilidade de B, desde que P[B] ̸= 0:

P[A | B] =
P[A ∩ B]

P[B]
.

Dois eventos A e B são ditos independentes quando a probabilidade conjunta P[A ∩ B] pode ser
fatorada como o produto P[A]P[B]:

P[A ∩ B] = P[A]P[B].

De forma equivalente, a independência entre A e B pode ser expressa afirmando que P[A | B] =
P[A], sempre que P[B] ̸= 0.

Além disso, uma sequência de variáveis aleatórias é dita i.i.d. (independentes e identicamente
distribuídas) quando todas as variáveis da sequência são mutuamente independentes e seguem
a mesma distribuição de probabilidade.

A.2.3 Algumas fórmulas importantes

P[A ∪ B] = P[A] + P[B]−P[A ∩ B] (regra da soma)

P

[
n⋃

i=1

Ai

]
≤

n

∑
i=1

P[Ai] (desigualdade da união)

P[A | B] =
P[B | A]P[A]

P[B]
(fórmula de Bayes)

P

[
n⋂

i=1

Ai

]
= P[A1]P[A2 | A1] · · ·P

[
An |

n−1⋂
i=1

Ai

]
(regra da cadeia)

Exercício 26. Prove os resultados acima.

A.2. PROBABILIDADE 135

A.2.4 Esperança e desigualdade de Markov

A esperança ou valor esperado de uma variável aleatória X é denotada por E[X] e, no caso
discreto, é definida como

E[X] = ∑
x

x P[X = x]. (C.9)

No caso contínuo, quando X possui uma função densidade de probabilidade f (x), a esperança é
dada por

E[X] =
∫ ∞

−∞
x f (x) dx.

Além disso, dado uma função qualquer g, temos que:

E[g(X)] =
∫ ∞

−∞
g(x) f (x) dx.

Uma propriedade fundamental da esperança é sua linearidade. Isto é, para quaisquer variá-
veis aleatórias X e Y e constantes a, b ∈ R, temos:

E[aX + bY] = aE[X] + bE[Y]. (C.10)

A seguir, apresentamos um limite superior simples para uma variável aleatória não-negativa
em função de sua esperança, conhecido como a Desigualdade de Markov.

Teorema 9 (Desigualdade de Markov). Seja X uma variável aleatória não-negativa (X ≥ 0 quase
certamente) com valor esperado E[X] < ∞. Então, para todo t > 0, temos:

P(X ≥ t) ≤ E[X]

t
.

Exercício 27. Prove as desigualdades de Markov.

A.2.5 Variância e a desigualdade de Chebyshev

A variância de uma variável aleatória X é denotada por Var[X] e definida como

Var[X] = E[(X−E[X])2].

O desvio padrão de X é denotado por σX e definido como

σX =
√

Var[X].

Para qualquer variável aleatória X e qualquer constante a ∈ R, as seguintes propriedades
básicas são válidas:

Var[X] = E[X2]−E[X]2,

Var[aX] = a2 Var[X].

Além disso, se X e Y forem independentes, então

Var[X + Y] = Var[X] + Var[Y].

Exercício 28. Prove as identidade acima.

136 APÊNDICE A. REVISÃO

A seguinte desigualdade, conhecida como Desigualdade de Chebyshev, fornece um limite para
a probabilidade de uma variável aleatória se desviar de sua esperança em função do seu desvio
padrão.

Teorema 10 (Desigualdade de Chebyshev). Seja X uma variável aleatória com valor esperado µ =

E[X] e variância finita Var(X) = σ2. Então, para todo ε > 0, vale:

P(|X− µ| ≥ ε) ≤ σ2

ε2 .

Exercício 29. Prove a desigualdade de Chebyshev.

A.2.6 Covariância

A covariância entre duas variáveis aleatórias X e Y é denotada por Cov(X, Y) e definida por

Cov(X, Y) = E [(X−E[X])(Y−E[Y])] .

Exercício 30. Prove que
Cov(X, Y) = E [XY]−E [X]E [Y] .

Dizemos que X e Y são não correlacionadas quando Cov(X, Y) = 0. Se X e Y forem indepen-
dentes, então certamente são não correlacionadas, mas a recíproca nem sempre é verdadeira.

Exercício 31. Seja X uniforme no intervalo [−1, 1] e seja Y = X2. Mostre que Cov (X, Y) = 0 mas X, Y
não são independentes.

Observação 3. Considere uma variável aleatória contínua X centrada em zero, ou seja, E[X] = 0, com
densidade de probabilidade par e definida em um intervalo do tipo (−a, a), com a > 0. Seja Y = g(X)

para uma função g. A questão é: para quais funções g(X) temos Cov(X, g(X)) = 0?
Sabemos que

Cov(X, g(X)) = E[Xg(X)]−E[X]E[g(X)].

Como E[X] = 0, segue que Cov(X, g(X)) = E[Xg(X)]. Denotando a densidade de X por f (x), temos

Cov(X, g(X)) =
∫ a

−a
xg(x) f (x)dx.

Uma maneira de garantir que Cov(X, g(X)) = 0 é exigir que g(x) seja uma função par. Assim,
xg(x) f (x) será uma função ímpar e a integral em (−a, a) se anulará, ou seja,∫ a

−a
xg(x) f (x)dx = 0.

Portanto, Cov(X, f (X)) = 0 e como Y = g(X), teremos que ambas são dependentes.
Dessa forma, podemos concluir que a distribuição precisa de X não afeta a condição, desde que p(x)

seja simétrica em torno da origem. Qualquer função par f (·) satisfará Cov(X, f (X)) = 0.

A covariância é uma forma bilinear simétrica e semi-definida positiva, com as seguintes pro-
priedades:

A.2. PROBABILIDADE 137

• Simetria: Cov(X, Y) = Cov(Y, X) para quaisquer variáveis X e Y.

• Bilinearidade: Cov(X + X′, Y) = Cov(X, Y) +Cov(X′, Y) e Cov(aX, Y) = a Cov(X, Y) para
qualquer a ∈ R.

• Semi-definida positiva: Cov(X, X) = Var[X] ≥ 0 para qualquer variável X.

Além disso, vale a desigualdade de Cauchy-Schwarz, que afirma que para variáveis X e Y
com variância finita,

|Cov(X, Y)| ≤
√

Var[X]Var[Y].

Perceba a semelhança do resultado acima com a desigualdade de Cauchy-Schwarz!

Exercício 32. Prove os resultados acima.

A matriz de covariância de um vetor de variáveis aleatórias X = (X1, . . . , Xp) é a matriz em
Rn×n denotada por C(X) e definida por

C(X) = E
[
(X−E[X])(X−E[X])⊤

]
.

Portanto, C(X) é a matriz cujos elementos são Cov(Xi, Xj). Além disso, é imediato mostrar
que

C(X) = E[XX⊤]−E[X]E[X]⊤.

A.2.7 Teoremas assintóticos

Em muitas aplicações de probabilidade e estatística, estamos interessados no comportamento de
sequências de variáveis aleatórias quando o número de observações tende ao infinito. Os teoremas
assintóticos fornecem resultados fundamentais que descrevem como certos estimadores ou somas
de variáveis aleatórias se comportam no limite, ou seja, quando o tamanho da amostra n cresce
indefinidamente.

Teorema 11 (Lei Fraca dos Grandes Números). Seja (Xn)n∈N uma sequência de variáveis aleatórias
independentes, todas com a mesma esperança µ e variância σ2 < ∞. Definindo a média amostral por

Xn =
1
n

n

∑
i=1

Xi,

então, para qualquer ε > 0,
lim
n→∞

P
(∣∣Xn − µ

∣∣ ≥ ε
)
= 0.

Exercício 33. Prove a Lei Fraca dos Grandes números utilizando a desigualdade de Chebyshev.

Teorema 12 (Teorema Central do Limite). Seja X1, . . . , Xn uma sequência de variáveis aleatórias i.i.d.
com esperança µ e desvio padrão σ. Definimos a média amostral como

Xn =
1
n

n

∑
i=1

Xi

138 APÊNDICE A. REVISÃO

e a variância da média como σ2
n = σ2/n. Então, a variável padronizada (Xn − µ)/σn converge em

distribuição para uma normal padrão N(0, 1). Mais precisamente, para todo t ∈ R,

lim
n→∞

P

(
Xn − µ

σn
≤ t
)
=
∫ t

−∞

1√
2π

e−x2/2dx.

Observação 4. Apesar dos teoremas assintóticos, como a Lei Fraca dos Grandes Números e o Teorema
Central do Limite, serem fundamentais para entender o comportamento de sequências de variáveis aleatórias
quando n → ∞, na prática, em aprendizado de máquina, o número de amostras n nem sempre é grande o
suficiente para que esses resultados sejam aplicáveis com segurança. Por outro lado, desigualdades como as
de Markov e Chebyshev fornecem limites válidos para qualquer valor finito de n. Essas desigualdades são
exemplos de desigualdades de concentração, que nos permitem controlar a probabilidade de desvios em torno
da média de uma variável aleatória. A teoria de concentração será crucial em tópicos futuros, pois fornece
ferramentas importantes para analisar o desempenho de algoritmos em cenários onde o regime assintótico
não pode ser garantido.

A.2.8 Função geradora de momentos

A esperança E[Xp] é chamada de p-ésimo momento da variável aleatória X. A função geradora de
momentos de uma variável aleatória X é uma ferramenta importante, pois permite obter seus di-
ferentes momentos por meio de diferenciação em zero. Essa função é crucial tanto para descrever
a distribuição de X quanto para analisar suas propriedades.

A função geradora de momentos de uma variável aleatória X é a função MX : t 7→ E[etX],
definida para os valores de t ∈ R tais que a expectativa exista (seja finita).

Exercício 34. Mostre que se MX for diferenciável em zero, então o p-ésimo momento de X é dado por
E[Xp] = M(p)

X (0).

Exercício 35. Seja X uma variável aleatória com distribuição normal padrão, ou seja, X ∼ N(0, 1).
Mostre que a função geradora de momentos de X é dada por por:

MX(t) = e
t2
2 .

Bibliografia

Apêndice B

Guia de desigualdades

139

140 APÊNDICE B. GUIA DE DESIGUALDADES

Apêndice C

Ferramentas computacionais

C.1 Git

O Git é um sistema de controle de versão distribuído amplamente utilizado no desenvolvimento
de software. Ele permite que diversos desenvolvedores trabalhem simultaneamente em um pro-
jeto, acompanhando as alterações feitas no código, revertendo mudanças, criando ramificações
(branches) e colaborando de forma eficiente.

Com o Git, o histórico de alterações de um projeto é armazenado localmente, o que possibilita
o trabalho off-line e oferece grande flexibilidade na manipulação de versões.

Principais comandos do Git

A seguir, apresentamos os comandos mais básicos e úteis do Git:

• git init

Inicializa um novo repositório Git em um diretório.

• git clone <URL>

Clona um repositório remoto (por exemplo, do GitHub) para a máquina local.

• git status

Exibe o estado atual do repositório: arquivos modificados, não rastreados etc.

• git add <arquivo>

Adiciona um ou mais arquivos ao staging area, preparando-os para o commit.

• git commit -m "mensagem"

Registra as mudanças preparadas com uma mensagem descritiva.

• git log

Mostra o histórico de commits do repositório.

• git diff

Exibe as diferenças entre arquivos modificados e o último commit.

141

142 APÊNDICE C. FERRAMENTAS COMPUTACIONAIS

• git branch

Lista todas as branches do projeto.

• git checkout <branch>

Alterna para outra branch existente.

• git merge <branch>

Mescla o conteúdo de uma branch à branch atual.

• git pull

Atualiza o repositório local com as alterações do repositório remoto.

• git push

Envia os commits locais para o repositório remoto.

Exemplo de fluxo básico

git init

git add arquivo.txt

git commit -m "Adiciona arquivo inicial"

git remote add origin https://github.com/usuario/repositorio.git

git push -u origin main

C.2 Python

C.3 Poetry

Referências Bibliográficas

Bach, F. (2024). Learning Theory from First Principles. Adaptive Computation and Machine Lear-
ning series. MIT Press. 28

Breiman, L. (2001a). Random forests. Machine Learning, 45:5–32. 9

Breiman, L. (2001b). Statistical Modeling: The Two Cultures (with comments and a rejoinder by
the author). Statistical Science, 16(3):199 – 231. 9

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA. 6, 18

Izbicki, R. and dos Santos, T. M. (2020). Aprendizado de máquina: uma abordagem estatística. 6, 8,
15, 19

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning:
with Applications in R. Springer. 6, 7, 28

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of Machine Learning. The MIT
Press, 2nd edition. 6, 10

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning : from theory to algo-
rithms. 6, 7

Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM. 103, 104, 123

143

	Introdução
	Um breve histórico do aprendizado estatístico
	Inferência vs Predição
	As duas culturas de Breiman

	Algumas tarefas clássicas de aprendizado
	Exemplos
	Salários
	Mercado de ações

	Um conselho: a importância de ser ruim antes de ser bom

	Fundamentos do aprendizado supervisionado
	Formulação do problema
	Decomposição de viés-variância em regressão
	Data Splitting e Validação Cruzada

	Introdução à regressão via mínimos quadrados
	Mínimos quadrados
	Resolução Numérica
	Estimativas de erros para regressão linear
	Um pouco de inferência

	Introdução à classificação via regressão logística
	Classificador de Bayes
	O Modelo Logístico
	Estimando os Coeficientes da Regressão

	Um pouco de otimização - O método de Newton
	Outras métricas de avaliação
	Ajuste do limiar de decisão
	Escolhendo o limiar de decisão

	KNN
	KNN para classificação
	KNN para regressão
	O que é treinado no KNN?
	Regressão Linear vs. KNN

	Modelos baseados em árvores
	Árvores de decisão
	Divisão Binária Recursiva
	Poda de Árvores (Tree Pruning)
	Árvores de Classificação
	Árvores versus modelos lineares
	Vantagens e Desvantagens das Árvores

	Bagging
	Estimativa do Erro Out-of-Bag (OOB)
	Importância de Variáveis em Modelos Bagged

	Random Forests
	Impacto dos Parâmetros B e m
	Uso de Random Forests em Altas Dimensões

	Seleção de modelos lineares e regularização
	Seleção do melhor subconjunto (Best Subset Selection)
	Seleção Foward e Backward

	Ridge e Lasso
	Regressão Ridge (Ridge Regression)
	Regressão Lasso
	Formulações Alternativas de Ridge e Lasso
	Interpretação via encolhimento
	Interpretação Bayesiana de Ridge e Lasso

	Boosting
	AdaBoost
	Cálculo do erro empírico
	Um pouco de teoria

	Gradient Boosting

	SVM
	Caso separável
	Problema primal
	Um pouco de otimização convexa
	Vetores de suporte
	Um breve comentário sobre dualidade
	Problema dual

	Caso não separável
	O truque do kernel
	Formulações primal e dual com kernel

	Redução de dimensão
	Análise de componentes principais
	Variância explicada
	Decomposição em valores singulares
	Aplicação: redução de dimensão
	Aplicação: compressão de dados

	Projeções aleatórias
	Aplicação

	t-SNE
	Aplicação 1

	K-Médias
	Predição conforme
	O método split conformal
	Conformalized Quantile Regression
	Partição local via árvore de decisão

	Revisão
	Álgebra linear
	Multiplicações
	Mudança de base
	Produtos internos
	Ortogonalidade

	Probabilidade
	Variáveis aleatórias
	Probabilidade condicional e independência
	Algumas fórmulas importantes
	Esperança e desigualdade de Markov
	Variância e a desigualdade de Chebyshev
	Covariância
	Teoremas assintóticos
	Função geradora de momentos

	Guia de desigualdades
	Ferramentas computacionais
	Git
	Python
	Poetry

