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6 SUMARIO
Material do curso

Todo o material utilizado neste curso, incluindo cédigos e notebooks, pode ser acessado no
repositério do GitHub: https://github.com/thiagorr162/curso_aprendizado.

Referéncias principais

O contetdo deste curso é baseado em referéncias que cobrem tépicos fundamentais de aprendi-
zado de méquina e estatistica. Izbicki and dos Santos (2020) introduz o aprendizado de maquina
com énfase em uma abordagem estatistica, voltada ao publico brasileiro. James et al. (2013) apre-
sentam métodos estatisticos aplicados a aprendizagem supervisionada e ndo supervisionada,
com exemplos em R e Python. Hastie et al. (2001) abordam técnicas avangadas e a teoria estatis-
tica por tras de algoritmos de aprendizado de maquina. Shalev-Shwartz and Ben-David (2014)
desenvolvem a teoria do aprendizado e a andlise de algoritmos, com foco na compreensdo ma-
tematica das técnicas. Mohri et al. (2018) tratam de conceitos fundamentais de generalizagdo e
estabilidade, além de fornecer uma base tedrica para diversos algoritmos modernos.

Todas esses livros podem ser baixadas online de forma legal nos sites dos autores.


https://github.com/thiagorr162/curso_aprendizado

Capitulo 1

Introducao

Aprendizado de mdquina é um termo utilizado para descrever sistemas capazes de identificar au-
tomaticamente padrdes e regularidades em dados (Shalev-Shwartz and Ben-David, 2014). Nos
ultimos anos, essa drea consolidou-se como uma ferramenta indispensavel para atividades que
envolvem a andlise e interpretacdo de grandes volumes de informagado. Hoje em dia, essa tecno-
logia esta presente em nosso cotidiano: motores de busca ajustam seus resultados para atender
melhor as nossas consultas (a0 mesmo tempo em que exibem antncios), filtros de spam sdo aper-
feicoados para proteger nossas caixas de e-mail, e sistemas de detecgdo de fraudes asseguram
a integridade de transagdes financeiras realizadas com cartdes de crédito. Além disso, cdmeras
digitais reconhecem rostos, assistentes virtuais em smartphones interpretam comandos de voz e
veiculos utilizam algoritmos inteligentes para prevenir acidentes. O aprendizado de mdquina
também desempenha papel crucial em diversas dreas da ciéncia, como a bioinformatica, a medi-

cina e a astronomia.

1.1 Um breve histérico do aprendizado estatistico

Como descrito em James et al. (2013), embora o termo aprendizado estatistico seja relativamente
recente, muitos dos conceitos fundamentais da drea foram estabelecidos hé bastante tempo. No
inicio do século XIX, surgiu o método dos minimos quadrados, que representa uma das primeiras
formas do que hoje conhecemos como regressdo linear. Essa técnica foi aplicada com sucesso,
inicialmente, em problemas de astronomia. A regressdo linear é amplamente utilizada para
prever varidveis quantitativas, como o saldrio de um individuo, por exemplo.

Com o objetivo de prever varidveis qualitativas — como determinar se um paciente sobrevi-
verd ou ndo, ou se o mercado financeiro terd alta ou queda —, foi proposta em 1936 a andlise
discriminante linear. J4 na década de 1940, autores sugeriram uma abordagem alternativa: a
regressao logistica. No inicio dos anos 1970, o conceito de modelos lineares generalizados foi intro-
duzido, englobando tanto a regressao linear quanto a logistica como casos particulares dentro de
uma estrutura mais ampla.

Até o final da década de 1970, diversas técnicas para aprendizado a partir de dados ja estavam
disponiveis, embora fossem predominantemente lineares, devido as limita¢cdes computacionais

da época para modelagem de relacdes ndo lineares. A partir dos anos 1980, com o avanco da
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8 CAPITULO 1. INTRODUCAO

tecnologia, métodos ndo lineares passaram a ser mais acessiveis. Nesse periodo surgiram as
arvores de decisdo para classificagdo e regressdo, seguidas pelos modelos aditivos generalizados.
Ainda nos anos 1980, as redes neurais ganharam destaque, e nos anos 1990, as maquinas de vetor
de suporte (support vector machines) foram introduzidas.

Desde entdo, o aprendizado estatistico consolidou-se como um subcampo da estatistica dedi-
cado a modelagem e predi¢do em cendrios supervisionados e ndo supervisionados. Nos tltimos
anos, o progresso na drea foi impulsionado pela crescente disponibilidade de softwares podero-
sos e acessiveis, como a linguagem de programacdo Python, que é gratuito e de cédigo aberto.
Esse avango vem contribuindo para ampliar o alcance das técnicas de aprendizado estatistico,
tornando-as uma ferramenta essencial ndo apenas para estatisticos e cientistas da computagao,

mas também para profissionais de diversas outras éreas.

1.1.1 Inferéncia vs Predi¢ao

Como descrito em Izbicki and dos Santos (2020), em problemas supervisionados, é importante
distinguir entre dois objetivos fundamentais: a inferéncia e a predi¢do. Essas duas abordagens

guiam a forma como modelos sdo construidos e avaliados.

¢ Objetivo inferencial diz respeito a compreensdo da relagdo entre as covaridveis x e a va-
ridvel resposta Y. Nesse caso, queremos responder perguntas como: quais covaridveis sao
mais relevantes para explicar Y? Qual a direcdo e a magnitude do efeito de cada preditor?
Esse tipo de andlise é util quando o interesse estd em interpretar o modelo, entender a
estrutura dos dados ou formular hipéteses cientificas.

* Objetivo preditivo, por outro lado, estd focado em construir uma fungéo g : R — R que
tenha boa capacidade de prever Y para novas observagdes nao vistas durante o treinamento.
O sucesso neste contexto é medido pela capacidade do modelo em generalizar para dados
futuros, mesmo que isso ocorra as custas de uma menor interpretabilidade do modelo.

Para ilustrar essas distin¢des, vejamos dois exemplos praticos:

¢ No Exemplo 1.3 (Isomap face data), cada observagdo consiste em uma imagem de um rosto
humano, e o objetivo é prever a diregdo para a qual a pessoa estd olhando (varidvel y) com
base nos pixels da imagem (varidveis x). Esse é um exemplo puramente preditivo, pois a
principal meta é estimar corretamente a direcdo do olhar em novas imagens. O modelo ndo
busca explicar quais regides da imagem sdo mais relevantes ou como cada pixel individual

influencia a resposta, mas sim gerar boas predicoes.

* Ja no Exemplo 1.4 (Million Song Dataset), o banco de dados contém informagdes sobre
diversas caracteristicas de musicas (como timbre, energia, dancabilidade etc.) e o ano de
lancamento de cada uma delas. Nesse caso, o problema tem um cardter misto. Por um
lado, queremos prever o ano de lancamento a partir das covaridveis disponiveis (objetivo
preditivo). Por outro, pode haver interesse em entender como cada caracteristica da musica
se relaciona com o ano de langamento, como por exemplo investigar se musicas dos anos

70 sdo de fato mais "dancantes"do que as atuais (objetivo inferencial).
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Portanto, enquanto alguns problemas sdo essencialmente preditivos ou inferenciais, outros
envolvem uma combinagdo dos dois. Essa distin¢do é relevante, pois impacta tanto a escolha do
modelo quanto a forma de interpretéa-lo e validé-lo.

1.1.2 As duas culturas de Breiman

Leo Breiman foi um estatistico renomado, conhecido por suas contribui¢cdes fundamentais a
estatistica e ao aprendizado de maquina, incluindo o desenvolvimento de métodos como random
forests Breiman (2001a). Em seu influente artigo "Statistical Modeling: The Two Cultures” (Breiman,
2001b), Breiman discute duas abordagens distintas para modelagem estatistica. Ele inicia seu
artigo com o seguinte resumo:

“There are two cultures in the use of statistical modeling to reach conclusions from data.
One assumes that the data are generated by a given stochastic data model. The other uses
algorithmic models and treats the data mechanism as unknown. The statistical community
has been committed to the almost exclusive use of data models. This commitment has led to
irrelevant theory, questionable conclusions, and has kept statisticians from working on a large
range of interesting current problems. Algorithmic modeling, both in theory and practice, has
developed rapidly in fields outside statistics. It can be used both on large complex data sets
and as a more accurate and informative alternative to data modeling on smaller data sets. If
our goal as a field is to use data to solve problems, then we need to move away from exclusive
dependence on data models and adopt a more diverse set of tools.”

O artigo teve grande impacto na comunidade estatistica e no campo do aprendizado de mé-
quina. Nele, Breiman argumenta que existem duas culturas distintas na modelagem de dados:
a cultura dos modelos estocasticos, que assume que os dados sdo gerados por um modelo pro-
babilistico especificado (como regressdo linear, modelos lineares generalizados etc.), e a cultura
algoritmica, que foca na construgdo de algoritmos preditivos eficazes sem necessariamente se
preocupar com a interpretagdo ou com a modelagem explicita da distribuicdo dos dados (como
arvores de decisdo, random forests, redes neurais, entre outros).

Breiman defende que a estatistica tradicional estava excessivamente focada em modelos esto-
casticos, o que limitava seu impacto em problemas préticos, enquanto métodos algoritmicos —
amplamente utilizados fora da estatistica, especialmente na ciéncia da computagdo — estavam
mais bem adaptados para resolver problemas com grandes volumes de dados e alta complexi-
dade.

Hoje em dia, o artigo de Breiman é amplamente citado e considerado um marco que antecipou
a ascensdo de métodos de aprendizado de maquina dentro da estatistica e da ciéncia de dados.
No entanto, sua visdo também recebeu criticas. Alguns argumentam que as duas culturas ndo
sdo mutuamente excludentes e que ha um valor significativo na modelagem estatistica classica,
especialmente quando a interpretacdo dos pardmetros e a inferéncia causal sdo importantes.
Além disso, com o avan¢o dos métodos de aprendizado estatistico e da estatistica bayesiana,
muitos pesquisadores propdem abordagens hibridas que combinam modelagem interpretavel
com o poder preditivo dos algoritmos.
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Atualmente, o artigo de Breiman é visto como uma provoca¢do importante que incentivou
a comunidade a repensar o papel da estatistica em problemas do mundo real, mas também é
reconhecido que tanto a modelagem estocastica quanto a preditiva tém seu espaco e relevancia
dependendo do contexto e dos objetivos da analise.

1.2 Algumas tarefas classicas de aprendizado

A seguir, apresentamos algumas tarefas cldssicas de aprendizado de mdquina que tém sido am-
plamente estudadas (Mohri et al., 2018):

¢ Classificagdo: consiste em atribuir uma categoria a cada item. Por exemplo, na classificagdo
de documentos, o objetivo é rotular cada texto com categorias como politica, negobcios,
esportes ou clima. J4 na classificacdo de imagens, cada imagem pode ser categorizada como
carro, trem ou avido. Em geral, o niimero de categorias é limitado a algumas centenas, mas
pode ser consideravelmente maior em tarefas complexas, como reconhecimento 6ptico de
caracteres (OCR), classificagdo de textos ou reconhecimento de fala.

* Regressdo: envolve a predi¢do de um valor numérico continuo para cada item. Exemplos
comuns incluem a previsdo de precos de acdes ou de indicadores econdmicos. Diferente-
mente da classificagdo, em regressdo o erro de uma predi¢do depende da distancia entre o
valor real e o valor estimado, enquanto na classificagdo normalmente ndo ha uma medida

de proximidade entre as categorias.

* Ranqueamento: trata-se de aprender a ordenar itens de acordo com algum critério. Um
exemplo tipico é o ranqueamento de pédginas em um motor de busca, onde o sistema
precisa retornar os resultados mais relevantes para uma consulta. Outras aplicagdes de
ranqueamento aparecem em sistemas de extragdo de informacdes e em processamento de

linguagem natural.

¢ Agrupamento (Clustering): busca organizar um conjunto de itens em subconjuntos homo-
géneos. Algoritmos de agrupamento sdo especialmente tteis na analise de grandes volumes
de dados. Na analise de redes sociais, por exemplo, técnicas de clustering sdo usadas para

identificar comunidades ou grupos com caracteristicas similares dentro de uma rede.

* Reducio de dimensionalidade ou aprendizado de variedades: refere-se ao processo de
transformar uma representagdo original de dados em uma representagcdo de menor dimen-
sdo, preservando certas propriedades estruturais importantes. Um exemplo comum ocorre
no pré-processamento de imagens digitais em tarefas de visdo computacional.

1.3 Exemplos

1.3.1 Salérios

Nesta andlise, utilizamos um conjunto de dados que contém informagdes sobre salarios de traba-
lhadores da regido do Atlantico dos Estados Unidos (Fig. 1.3.1). O foco é explorar como fatores
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como idade, nivel de escolaridade e 0 ano em que o saldrio foi registrado influenciam os valores

salariais.
year age maritl race education region jobclass health health_ins logwage wage
0 2006 18 1.Never Married 1.White 1.<HS Grad 2. Middle Atlantic 1. Industrial 1. <=Good 2.No 4.318063  75.043154
1 2004 24 1.Never Married 1.White 4. College Grad 2. Middle Atlantic 2.Information 2.>=Very Good 2.No 4.255273 70.476020
2 2003 45 2.Married 1.White 3.Some College 2. Middle Atlantic 1. Industrial 1. <=Good 1.Yes 4.875061 130.982177
3 2003 43 2.Married 3.Asian 4. College Grad 2. Middle Atlantic 2. Information 2. >=Very Good 1.Yes 5.041393 154.685293
4 2005 50 4. Divorced 1. White 2.HS Grad 2. Middle Atlantic 2. Information 1. <=Good 1.Yes 4.318063  75.043154

Figura 1.1: Exemplo de registros do conjunto de dados de salarios.

Exercicio 1. Utilizando o cddigo nesse link. Faga uma andlise do comportamento entre as varidveis de
idade e saldrio. Faca o mesmo para nivel de escolaridade e saldrio.

1.3.2 Mercado de acdes

Enquanto o conjunto de dados de salarios aborda a previsdo de uma varidvel numérica continua,
neste exemplo o objetivo é prever um resultado qualitativo. Trata-se de um problema cldssico de

classificagdo, em que desejamos prever categorias ao invés de valores numéricos. Um exemplo

Year Lag1l Lag2 Lag3 Lag4 Lag5 Volume Today Direction

0 2001 0.381 -0.192 -2.624 -1.055 5.010 1.1913 0.959 Up
1 2001 0.959 0.381 -0.192 -2.624 -1.055 1.2965 1.032 Up
2 2001 1.032 0559 0381 -0.192 -2.624 14112 -0.623 Down
3 2001 -0.623 1.032 05959 0.381 -0.192 1.2760 0.614 Up
4 2001 0.614 -0.623 1.032 0.959 0.381 1.2057 0.213 Up

Figura 1.2: Exemplo de registros do conjunto de dados de agdes.

interessante envolve dados do mercado financeiro (Fig. 1.2), que incluem as varia¢des didrias
do indice S&P 500 ao longo de um periodo de cinco anos, entre 2001 e 2005. Esse conjunto de
dados, que chamaremos de Smarket, busca prever a dire¢do do mercado em um determinado dia
(se ird subir ou cair), utilizando como varidveis explicativas as mudangas percentuais dos cinco
dias anteriores.

Diferente da tarefa de regressdo, aqui o desafio consiste em classificar o movimento do mer-
cado como sendo uma alta (Up) ou uma baixa (Down). Embora o comportamento passado do
indice possa ndo fornecer uma regra clara para prever o movimento do dia seguinte, pequenas
tendéncias ou padrdes podem ser identificados com métodos de aprendizado estatistico.

Exercicio 2. Explorar os dados do mercado de agoes utilizando esse codigo.


https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/introducao/wage.ipynb
https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/introducao/stock.ipynb
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1.4 Um conselho: a importancia de ser ruim antes de ser bom

E natural que, quando comegamos a fazer algo, a gente faca essa coisa muito malfeita ou cheia
de defeitos. Isso é comum em qualquer processo de aprendizagem, e sempre foi assim, desde o
inicio dos tempos.

Quando comecei a programar em Python, muita coisa sobre a linguagem eu aprendi por
conta propria, apesar de ja ter feito alguns cursos basicos em C. Programei de forma amadora
em Python por muitos anos, até que, no doutorado, precisei aprender a programar de forma mais
organizada e profissional. Lembro que, nessa época, um amigo da pés-graduacdo me apresentou
ao "submundo da programacdo". Foi ai que aprendi muito do que sei hoje sobre terminal do
Linux, Git, e foi também quando comecei a usar o Vim.

Uma das coisas que esse amigo me mostrou foi o Pylint, que nada mais é do que um verifi-
cador de bugs e qualidade de c6digo para Python. O Pylint é bem rigoroso na anélise, e ainda
te d4, ao final, uma nota que vai até 10. Nessa fase, apesar de ja ter evoluido bastante, meus
coédigos ainda recebiam notas por volta de 6 ou 7. Resolvi entdo rodar o Pylint nos meus cédigos
antigos pra ter uma nogdo de qudo ruins eles eram — e a nota final foi -900. Pois é, existe um
limite superior para o qudo bem vocé consegue fazer algo, mas aparentemente o fundo do pogo
é infinito.

O que eu queria mostrar com essa histéria é que faz parte do processo de aprendizado ser
ruim no comego e melhorar com o tempo. Falo isso porque, hoje em dia, com o crescimento
dos LLMs, a gente fica tentado a pular essa etapa de errar muito até acertar, e ir direto pra
fase em que escrevemos c6digos limpos, bem comentados, identados e organizados. Mas ndo
se enganem: apesar da aparéncia profissional, depender de LLMs pra escrever tudo atrapalha
justamente essa parte essencial de aprender errando.

Nessas notas, vérios exercicios envolvem escrever cédigos em Python. Meu conselho é: ndo
tenham vergonha de errar, de escrever solugdes ruins ou confusas. Isso é absolutamente normal.

Vocés estdo aqui para evoluir — e errar faz parte do processo.



Capitulo 2

Fundamentos do aprendizado

supervisionado

O aprendizado supervisionado é uma das principais dreas do aprendizado de mdaquina e da
estatistica, tendo como objetivo construir modelos capazes de prever uma varidvel de interesse
Y a partir de um conjunto de varidveis explicativas X. Este paradigma baseia-se em dados
rotulados, ou seja, em observagdes para as quais tanto as covaridveis quanto a variavel de resposta

sdo conhecidas.

2.1 Formula¢ao do problema

Ao longo deste capitulo, assumiremos que dispomos de uma amostra de dados (X;, Y;)" ;, em
que cada par (Xj, Y;) é uma realizagdo de um mesmo par de varidveis aleatorias (X,Y). Além
disso, adotaremos a hipdtese de que estas observagdes sdo i.i.d. (independentes e identicamente
distribuidas). Esta suposi¢do simplifica a andlise tedrica, permitindo o uso de ferramentas como
leis dos grandes nimeros e teoremas de concentragdo. Na prdtica, embora a hipotese de i.i.d.
nem sempre seja completamente satisfeita, ela ¢ uma aproximacao tutil e bastante comum em
aplicagdes reais.

Nosso objetivo serd utilizar esse conjunto de dados (ou uma parte dele) para aprender um
modelo preditivo, que denotaremos por ¢, de forma que §(X) ~ Y. O significado da relacdo de
aproximacao "~"sera discutido a seguir.

Ao construir um modelo preditivo ¢(X) para estimar uma variavel de interesse Y, é essencial
definir uma métrica que quantifique o erro cometido pelas previsdes. Essa métrica é chamada
de funcdo de perda, e mede a discrepancia entre o valor verdadeiro Y e a predi¢do ¢(X). Duas

escolhas comuns para problemas com resposta continua (regressao) sao:

A (Y —¢(X))? (erro quadrético)
L(Y,§(X)) = )
|Y —¢(X)| (erro absoluto).

No caso de problemas com resposta discreta (classificagdo), um exemplo comum de funcdo de
perda é a chamada perda 0-1, definida por:

L(Y,8(X)) = I{g(X) # Y},

13
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a qual simplesmente contabiliza a quantidade de erros cometidos pelo classificador ¢, isto €, o
nimero de vezes em que a predicdo difere do valor verdadeiro.

A escolha da funcdo de perda impacta diretamente as propriedades do modelo e como ele
responde a diferentes tipos de dados ou outliers.

Erro de teste, também chamado de erro de generalizagio, é o erro de predigdo em uma amostra
de teste independente:

Rp(g) = E[L(Y,4(X)) | D]

onde X e Y sdo sorteados de sua distribuicdo conjunta (populagdo). Note que ¢ depende de D!
Aqui, o conjunto de treinamento D ¢ fixo, e o erro de teste se refere ao erro para esse conjunto
de treinamento especifico. Uma quantidade relacionada é o erro esperado de predigdo (ou erro
esperado de teste):

R(§) = E [L(Y,§(X))] = E [Errp)].

Note que a esperanga acima leva em conta toda a aleatoriedade envolvida, incluindo a aleatorie-
dade do conjunto de treinamento que gerou ¢.

Nosso objetivo serd a estimagdo de Errp, embora veremos que Err é mais acessivel do ponto
de vista estatistico, e a maioria dos métodos busca estimar efetivamente esse erro esperado.
Estimar Errp de maneira condicional ndo é muito vidvel na prética.

Erro de treinamento é a perda média sobre a amostra de treinamento:

R(8) = 3 Y Ly §(x)

1 N
i=1

Nosso interesse estd em conhecer o erro de teste esperado do modelo ¢§. A medida que
o modelo se torna mais complexo, ele se ajusta melhor aos dados de treinamento e passa a
capturar estruturas subjacentes mais complicadas. Com isso, ocorre uma reduc¢do no viés, mas
um aumento na variancia. Existe, portanto, um nivel intermedidrio de complexidade do modelo
que minimiza o erro esperado de teste.

Infelizmente, o erro de treinamento nio é uma boa estimativa do erro de teste. O erro de
treinamento tipicamente diminui & medida que a complexidade do modelo aumenta, podendo
até atingir zero quando essa complexidade é suficientemente alta. Entretanto, um modelo com
erro de treinamento igual a zero estd superajustado (overfit) aos dados de treinamento e, geral-
mente, apresentard baixa capacidade de generalizagao.

Ao longo deste capitulo, descreveremos diversos métodos para estimar o erro de teste espe-
rado de um modelo. Tipicamente, 0 modelo dependerd de um pardmetro ou de um conjunto de
parametros de ajuste &, de modo que podemos escrever a predi¢do como §,(x). O pardmetro
« controla a complexidade do modelo, e nosso objetivo é encontrar o valor de & que minimize
o erro esperado de teste, ou seja, que produza o menor erro médio. Para simplificar a notagéo,
omitiremos frequentemente a dependéncia explicita de ¢(x) em a.

E importante destacar que temos, na verdade, dois objetivos distintos ao avaliar modelos
preditivos:

¢ Selegdo de modelo: consiste em comparar diferentes modelos ou configuracdes a fim de
escolher o que apresenta o melhor desempenho.
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Figura 2.1: Exemplo de sobreajuste. Imagem retirada de (Izbicki and dos Santos, 2020).

* Avalia¢do de modelo: uma vez escolhido o modelo final, o objetivo passa a ser estimar o
seu erro de predigdo (ou erro de generaliza¢do) em novos dados.

Para entender como o erro de predicdo se comporta em fungdo da complexidade do modelo,
comecamos analisando o caso da regressado, onde é possivel decompor o erro de teste esperado
em termos de viés e varidncia. Essa decomposigdo fornece intuigdes valiosas sobre o compromisso
entre subajuste e sobreajuste, e servira de base conceitual para as discussdes posteriores sobre
classificagdo e selecao de modelos.

2.2 Decomposicao de viés-varidncia em regressao

As origens dos métodos de regressdo remontam a mais de 200 anos, com as contribui¢des de Le-
gendre (1805) e Gauss (1809), que introduziram o método dos minimos quadrados para modelar
o movimento dos planetas ao redor do Sol. Atualmente, a estimagdo de fun¢des de regressdo é
um dos pilares fundamentais da estatistica.

Embora as primeiras solugdes para este problema sejam antigas, apenas nas tltimas décadas,
com o avango das tecnologias de computagdo e armazenamento, novas abordagens puderam ser
exploradas. Em especial, o crescimento exponencial da quantidade de dados disponiveis tem im-
pulsionado o desenvolvimento de métodos que fazem menos suposi¢des sobre o comportamento
real dos fendmenos estudados.

Esse cendrio trouxe novos desafios: por exemplo, métodos cldssicos muitas vezes ndo conse-
guem lidar adequadamente com bancos de dados em que o ntiimero de varidveis excede o nimero
de observagdes, uma situagdo comum nos contextos atuais. Além disso, aplicagdes envolvendo
dados complexos — como imagens ou textos — tém se tornado frequentes e demandam técnicas
mais sofisticadas.

De modo geral, o objetivo de um modelo de regressao é capturar a relagdo entre uma variavel
aleatdria de interesse Y € R e um vetor de covaridveis x = (x1,.. .,xp) € RP. O foco estd em
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estimar a chamada fungdo de regressdo, definida por
r(x) :=E[Y | X = x].

A motivacdo para estudar essa funcdo estd relacionada ao problema de minimizar o erro
quadratico. Para ilustrar, considere uma variavel aleatéria Z e a fungado objetivo

¢(t) = E[(Z - 1),

em que buscamos o valor t € R que minimiza ¢(t). Derivando em relagdo a f e igualando a zero,
obtemos:

P(t)=ER2(Z-t)]=0 <& t=E[Z].
Portanto, o valor 6timo de ¢ que minimiza o erro quadrético € justamente a esperanca de Z.

Esse raciocinio se estende naturalmente ao contexto de regressdo. Nosso objetivo passa a ser

encontrar uma funcao g(x) que minimize

$(g) =E[(Y —g(X))*] =E [E [(Y - g(x))* | X =x]].

Fixando X = x, g(x) se comporta como um numero, e, pelo argumento anterior, a minimizagao
local de E[(Y — g(x))? | X = x] ocorre quando g*(x) = E[Y | X = x].

Assim, a fungdo de regressdo r(x) é, sob a métrica de erro quadratico, a melhor escolha para
aproximar Y em funcéo de x.

Exercicio 3. Seja
¢(t) = E[|Z — .

Encontre o t que minimiza a expressio acima.

Agora, suponha que o modelo verdadeiro seja dado por Y = ¢*(X) + ¢, onde ¢ é um ruido
com Ele] = 0, independente das covaridveis X. Nosso objetivo é estudar o erro quadrético
esperado de um modelo preditivo ¢(x) que tenta estimar y a partir de x.

O erro de predigio é medido pela perda quadrética (y — ¢(x))?, e buscamos decompor o
valor esperado desse erro em trés componentes: variancia, viés ao quadrado e ruido irredutivel,
considerando x fixado.

A fungdo 6tima g* é definida como:

87 (x) = argminE |(y — (x))*]
Para a decomposicdo, comecamos adicionando e subtraindo g*(x) no termo de erro esperado:
El(y — 2(x)) = El(y — 8" (x) +&"(x) — 2(x))?].
Expandindo o quadrado, obtemos:
E[(y — 8"(x))%] + El(g" (x) — 2(x))] + 2E[(y — 8" (x))(g" (x) — §(x))].

O primeiro termo, E[(y — g*(x))?], representa a variancia do ruido ¢ e, portanto, é irredutivel.
O segundo termo, E[(g*(x) — ¢(x))?], captura o erro introduzido pelo modelo ¢(x). O terceiro

termo é nulo, pois y — ¢*(x) = € tem média zero e é independente de §(x).
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Portanto, temos a seguinte decomposigdo:

E[(y — §(x))*] = El(y — &"(x))*] +E[(g"(x) — §(x))?].

>
ruido irreduzivel

Agora, o termo E[(¢*(x) — ¢(x))?] pode ser decomposto em viés e variancia:
E[(g"(x) — §(x))*] = E[(g"(x) — E[¢(x)] + E[g(x)] - &(x))’]
= (g"(x) — E[g(x)])* + Var(g(x)),

onde o termo cruzado é novamente nulo por independéncia.
Finalmente, temos a seguinte decomposigao cléssica:

E[(y — §(x))’] = El(y — g"(x))*] + (8" (x) — E[§(x)])? + Var(3(x)) .

ruido irredutivel viés2 variancia

Total Error

Optimum Model Complexity

Error

o >
Model Complexity

Essa decomposi¢do nos permite entender um dos conceitos fundamentais em aprendizado de
maquina e estatistica: o trade-off viés-varidncia. Em termos simples, existe uma relacdo inversa
entre o viés e a varidncia de um modelo. Modelos mais simples tendem a ter baixo varidncia, pois
suas previsdes mudam pouco ao variar a amostra de treinamento, mas frequentemente apresen-
tam alto viés por ndo capturarem toda a complexidade da func¢do g*(x). Por outro lado, modelos
mais complexos conseguem ajustar melhor os dados e reduzir o viés, mas tendem a ter alta
variancia, pois sdo mais sensiveis a flutuagdes nas amostras de treino. O desafio central em mo-
delagem preditiva é encontrar um equilibrio entre essas duas quantidades, de modo a minimizar
o erro total. Esse equilibrio é essencial para garantir que o modelo generalize bem para novos

dados, sem ser excessivamente simples (subajuste) ou excessivamente complexo (sobreajuste).

Resumindo: no caso da perda quadrética, o erro total pode ser decomposto como:

Erro Total = Erro Irredutivel + Viés® + Variancia.
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Exercicio 4. Acesse o notebook aqui e faga experimentos com o cédigo mudando o tamanho da amostra,
random state, grau dos polindmios, etc. Além disso, aplique o método de validagdo cruzada k-fold.

2.3 Data Splitting e Validacao Cruzada

Em situa¢des onde hd abundancia de dados, uma abordagem comum é dividir aleatoriamente o
conjunto em trés partes: um conjunto de treinamento, um conjunto de validagdo e um conjunto
de teste. O conjunto de treinamento é utilizado para ajustar os modelos; o conjunto de validacgao
serve para estimar o erro de predicdo e realizar a selecdo do modelo; e o conjunto de teste é

reservado para avaliar o erro de generalizagdo final do modelo escolhido.

IMPORTANTE! Idealmente, o conjunto de teste deve ser mantido isolado — como se
estivesse em um "cofre"— e s6 ser acessado ao final da anélise de dados. Caso utilizemos
o conjunto de teste de forma repetida durante a selecio do modelo, escolhendo aquele
com menor erro no teste, acabaremos subestimando o verdadeiro erro de generalizagao, as

vezes de maneira significativa.

Nao hd uma regra tnica para definir a quantidade de observacdes em cada uma das trés
divisdes, pois isso depende da razdo sinal-ruido dos dados e do tamanho da amostra disponivel.
Uma diviséo tipica é utilizar cerca de 50% dos dados para treinamento e 25% para validagéo e

teste, respectivamente.

Validation Test

Figura 2.2: Divisdo em treino, validagao e teste. Tirado de (Hastie et al., 2001).

No Python, podemos realizar essa divisdo utilizando a biblioteca scikit-learn. O procedi-
mento padrdo é, primeiramente, dividir os dados em duas partes: treino e teste. Em seguida,

subdividir a parte de treino em treino e validagao.

Listing 2.1: Divisdo em treino, validagdo e teste

from sklearn.model_selection import train_test_split

# Suponha que temos dados X e respostas Y
# X: matriz de covariaveis (n_samples x n_features)
# Y: vetor de respostas (n_samples,)

# Primeira divisao: treino e restante (validacao + teste)
X_train, X_rest, Y_train, Y_rest = train_test_split(
X, Y, test_size=0.5, random_state=42)



https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/supervisionado/tr_val_ts_split_for_pol_reg.ipynb
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# Segunda divisao: validacao e teste a partir do restante
X_val, X_test, Y_val, Y_test = train_test_split(

X_rest, Y_rest, test_size=0.5, random_state=42)

print("Treino:", X_train.shape)
print("Validacao:", X_val.shape)
print("Teste:", X_test.shape)

No exemplo acima, separamos 25% dos dados para o conjunto de teste e, dos 75% restantes,
cerca de 33% foi alocado para validagdo. Assim, o resultado final aproximado seria: 50% dos
dados para treino, 25% para validagdo e 25% para teste, como discutido anteriormente.

ATENGCAO: E importante definir o argumento random_state para garantir reprodutibili-
dade da divisao dos dados.

Embora a divisdo treino/validagdo/teste seja bastante comum, em situagdes onde a quanti-
dade de dados é limitada, desperdicar uma parte significativa da amostra apenas para validagao
pode ser custoso. Nesse contexto, uma estratégia amplamente utilizada é a validacdo cruzada,
em especial o k-fold cross-validation.

A ideia do k-fold é dividir o conjunto de dados em k subconjuntos (ou folds) de tamanhos
aproximadamente iguais. Em cada uma das k iterag¢des, utilizamos k — 1 desses subconjuntos
para treinar o modelo e o subconjunto restante para validd-lo. No final, o erro de validagao é
calculado como a média dos erros obtidos em cada uma das iteragdes.

Lote 1 1

Lote 2 -

Lote 3 -

Lote 4 1

Lote 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Observagao

Figura 2.3: Esquema com amostra de tamanho 20 e 5 folds. Retirado de Izbicki and dos Santos
(2020).

Essa técnica tem como vantagem utilizar o maximo de dados possivel para treinamento em
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cada repetigdo, reduzindo a varidncia da estimativa do erro de generaliza¢do. Além disso, o k-fold
ajuda a mitigar a dependéncia da divisdo aleatéria dos dados, ja que cada observagao é utilizada
tanto para treino quanto para validagao ao longo do processo.

No Python, a implementacdo do k-fold cross-validation pode ser feita utilizando a biblioteca

scikit-learn da seguinte maneira:

Listing 2.2: Validagdo cruzada k-fold

from sklearn.model_selection import KFold
# Suponha que temos dados X e respostas Y
k =5

kf = KFold(n_splits=k, shuffle=True, random_state=42)

for fold, (train_index, val_index) in enumerate(kf.split(X)):

X_train, X_val = X[train_index], X[val_index]

Y_train, Y_val = Y[train_index], Y[val_index]

print (f )

print( , X_train.shape, , X_val.shape)

No exemplo acima, o conjunto de dados é dividido em k = 5 subconjuntos. O argumento
shuffle=True garante que as observacdes sejam embaralhadas antes da divisdo em folds, e o
random_state garante a reprodutibilidade dos resultados.

Exercicio 5. Acesse o notebook aqui e faga experimentos com o cédigo mudando o tamanho da amostra,
random state, etc.



https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/supervisionado/data_split.ipynb

Capitulo 3

Introducdo a regressao via minimos

quadrados

3.1 Minimos quadrados

O método dos minimos quadrados tem suas origens no inicio do século XIX e estd intimamente ligado
a histéria da astronomia e da estatistica. Ele foi introduzido formalmente por Carl Friedrich
Gauss, que o utilizava desde 1795 em seus trabalhos com 6rbitas planetarias, embora o primeiro
a publicar sobre o método tenha sido Adrien-Marie Legendre, em 1805.

Legendre apresentou o método em seu trabalho sobre o calculo de 6rbitas cometdrias, pro-
pondo uma técnica para ajustar curvas a dados experimentais minimizando a soma dos qua-
drados dos erros. Poucos anos depois, em 1809, Gauss publicou seu famoso livro Theoria Motus
Corporum Coelestium, onde apresentou uma justificativa probabilistica do método com base na
distribui¢do normal dos erros.

Desde entdo, os minimos quadrados tornaram-se uma das ferramentas fundamentais em
estatistica, ciéncia de dados e andlise numérica, sendo aplicados em regressdo linear, ajuste de
modelos, filtragem de sinais e muitos outros contextos cientificos e tecnolégicos.

Motivados por esses contextos, consideremos agora o seguinte problema: queremos encontrar
um vetor B tal que

y = XB.

Essa expressdo possui solugdo se, e somente se, y € Ran X. Mas o que podemos fazer quando
queremos resolver uma equagao que nao tem solugdo? Por exemplo, se y = X + € onde € é um
erro aleatorio de medigédo?

A primeira vista, essa pode parecer uma pergunta boba, pois se ndo ha solugdo, entdo nao
ha solugdo. No entanto, situagdes em que desejamos resolver uma equagdo sem solugdo podem
surgir naturalmente — por exemplo, quando a equagdo vem de dados experimentais. Se ndo
houver nenhum erro, o vetor do lado direito y pertence a imagem de X, e a equacao é consistente.

Porém, na prética, é impossivel eliminar completamente os erros de medi¢do. Assim, pode
acontecer de uma equagdo que teoricamente deveria ser consistente ndo possuir solugdo.

O que fazer, entdo, nessa situagdo?

21
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A ideia mais simples é escrever o erro na forma

1XB =yl

e tentar encontrar o vetor f que minimiza essa quantidade. Se conseguirmos encontrar um f tal
que o erro seja zero, entdo o sistema é consistente e temos uma solugdo exata. Caso contrério,
obtemos a chamada solugio de minimos quadrados.

O nome minimos quadrados vem do fato de que minimizar || XS — y|| é equivalente a minimizar

2
m

1XB—y|]2 = kz (XB)—wl =Y ilxk,jﬁj -

k=1 |i=

7

isto é, estamos minimizando a soma dos quadrados de func¢des lineares.

Existem diversas maneiras de encontrar a solu¢do de minimos quadrados. Se estivermos em
R", e tudo for real, podemos ignorar os valores absolutos. Nesse caso, basta calcular as derivadas
parciais em relagdo a cada §; e encontrar onde todas elas se anulam — o que nos dara o ponto
de minimo.

Exercicio 6. Encontre a solugio do problema de minimos quadrados derivando e igualando a zero.

Existe uma forma mais simples de encontrar o minimo. De fato, ao considerarmos todos os
vetores B, o vetor X percorre todo o espago imagem de X, ou seja, Ran X. Portanto, minimizar
| XB — y|| equivale a calcular a menor distancia de y até Ran X.

Assim, || XB — y||*> é minima se, e somente se,

X,B = PRaanz

onde Pran x denota a projecdo ortogonal de y sobre o subespago imagem de X.
Se conhecemos uma base ortogonal vy, ..., v, de Ran X, podemos calcular Pr.nxy pela for-
mula:

Caso s6 tenhamos uma base qualquer de Ran X, é necessdrio utilizar o processo de Gram—
Schmidt para ortogonaliza-la antes de aplicar a férmula.

Existe, no entanto, uma alternativa mais direta. A condi¢do de que X8 = Pran x¥ € equivalente
a exigir que o vetor y — X seja ortogonal a Ran X, ou seja,

y— XpB L coluna de X.
Seja X = [a1,a,...,a,), onde cada a; é uma coluna. A condig¢do acima é equivalente a:
(y—XB,ax) =0, parak=1,2,...,n.

Ou, de forma matricial:
X*(y—Xp) =0,

o que é equivalente a chamada equagio normal:

X*XB = X*y.
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Xp
XB

col(X)

Figura 3.1: Projecdo ortogonal de y no espago coluna de X.

A solugdo dessa equagdo nos fornece a solugdo de minimos quadrados da equagdo Xp = y.
Note que a solugdo é tnica se, e somente se, X* X for inversivel.

Agora, se  é uma solugdo da equagio normal X*XpB = X*y (ou seja, uma solugdo de minimos
quadrados da equagdo X = y), entdo Xp = PranxYy. Assim, para encontrar a proje¢do ortogonal
de y sobre o espaco coluna Ran X, basta resolver a equagdo normal X*Xp = X*y e multiplicar a
solugdo por X.

Se o operador X*X for inversivel, entdo a solugdo da equagdo normal é dada por:
p=(X'X)'X"y,
e, portanto, a projegdo ortogonal Pran xy pode ser escrita como:

PRaan = X(X*X)ilx*y‘

Como isso vale para todo y, obtemos a expressdo matricial da projegdo ortogonal sobre o
espago coluna de X:

Pranx = X(X*X)1X*.
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N

Observacgao 1. Note que a expressio
Pranx = X(X*X)1X*.

é uma generalizagdo matricial para a projecdo ortogonal em vetores da forma

T

% = v(vTo) 1T,
jd que para um vetor x qualquer,
(v, x) vlx volx  ovol
lol> = loll> loll> ol

Exemplo 1. Suponha que sabemos que a relagdo entre x e y é dada por uma pardbola da forma
y =a+bx +cx?,

e queremos ajustar essa pardbola aos dados observados. Os coeficientes desconhecidos a, b, c devem satisfazer
o sistema:

a+bxk—i—cx,% =1y, k=12,...,n

Em forma matricial, esse sistema pode ser escrito como:

1 x x% 11

1 xy a2 a Y2
lel=1"
.2 c

1 x, xj Yn

Por exemplo, para os dados do exemplo anterior, devemos resolver a equagio de minimos quadrados:

1 -2 4 4
1 -1 1 a 2
1 0 O bl =11
1 1 1 c 1
1 3 9 1
Entio calculamos:
1 -2 4
1 1 111 1 -1 1 5 2 18
X'X=|-2 -1 01 3|1 0 o|l=]2 18 26
4 1 019 1 1 1 18 26 114
1 3 9
E também:
4
1 1 111 2 9
X'y=1-2 101 3]||[1]=]-5].
4 1 019 1 31
1
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Portanto, a equagio normal X' Xp = X'y é:

5 2 18 a 9
2 18 26 b|l|=1-5|,
18 26 114/ \c 31
cuja solugdo tinica é:
a= 86 b= 62 c= ﬁ
77’ 77’ 154

Portanto, a pardbola que melhor se ajusta aos dados é:

Y=77 =77 " 152"

3.2 Resolu¢dao Numérica

A forma fechada da solug¢do dos minimos quadrados, dada por
(X'X)p=X"y=p=(X"X)"X"y,

embora 1til em termos analiticos, pode ser instdvel numericamente e custosa para grandes di-

mensdes. Assim, é comum empregar abordagens numéricas mais robustas.

Fatoracdo QR. Um método bastante utilizado é a decomposi¢do QR, na qual a matriz X € R"*?
é escrita como X = QR, onde Q possui colunas ortonormais (ou seja, Q'Q = I) e R € RP*P ¢
triangular superior. Essa fatoragdo evita a inversdo direta da matriz X' X e proporciona maior
estabilidade numérica.

Como X' X = RTQ"QOR = R'R, temos:

(X'X)B=X"y <= R'RB=R'Q'y <= RB=Q'y.

Portanto, basta resolver um sistema linear triangular com matriz R, o que é computacional-
mente eficiente. O custo total permanece na ordem de O(d®). Em situagdes onde d é grande,
métodos iterativos como o gradiente conjugado também podem ser considerados (ver Golub e
Loan, 1996).

3.3 Estimativas de erros para regressao linear

Como vimos no primeiro capitulo, um conceito central na andlise de métodos de aprendizado
de maquina é compreender o comportamento de viés e varidncia do modelo.

Vamos assumir que os dados seguem o modelo

y={(x,B)+e

2

com E[e] = 0 e Var(e) = 0= e os pontos x estdo fixos, ou seja, a aleatoriedade é apenas sobre o

erro e. Seja B = (X" X)X "y a solugdo obtida por minimos quadrados. Entao:
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E[f] = (X" X) "X B[y = (X" X)"'X"Xp = B,
isto é, o estimador é ndo-viesado.

Agora vamos estimar o risco dado que estamos utilizando o estimador 3, ou seja:

A 1 A
R(B) = . [y — XBIP].
Precisamos ter atencdo redobrada na aleatoriedade da expressdo acima, isso porque o erro que

existe no nosso dataset no momento da estimagdo de p é potencialmente diferente do erro utili-
zado no célculo do risco. Podemos representar isso da seguinte forma

A 1 _
R(B) = —E [lly = X(X"X)"'X"y|"] .
Novamente, temos um y’ que sera utilizado no célculo do risco, e um y que é utilizado no calculo
de . Suponha entdo que ' = X + ¢ e que y = XB +&. Logo, a expressdo acima fica:
R(B) = [|ly — X(X"X) 7 X"y|]

E [|IXg+¢ — X(X"X)7'X"(X +¢) |

E[|¢ - X(XTX)*lesHZ}
2 1
= —E[|¢[*] - E [(e’,X(XTX)—le@} +-E [eTX(XTX)—1XTX(XTX)—1XTe]
_ 22 [S/TX(XTX)_lXTs} +1E [sTX(XTX)—les]
n n
Agora note que temos dois casos possiveis:

* Se¢ =g isto é, y =y, temos que a expressdo acima fica:

- e
— 02— %]E :tr(sTX(XTX)_lXTE)}
=2 - %]E :tr(ssTX(XTX)AXT)}
_ 2T
n

e como estamos usando o mesmo y para estimar e avaliar o modelos, essa quantidade se
refere ao erro de treinamento!

e Se ¢ e ¢ sdo independentes, isto é, y e ' sdo independentes, entdo
E [e’TX(XTX)—les} ~E [SIT} E [X(XTX)—les} =0

e portanto a expressao fica:

S| =

R(B) = *~F [sTX(XTX)*lee}
2

L
n
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Nesse caso, como o y utilizando para treinamento e o i’ utilizado para estimagdo do risco
sdo diferentes, a quantidade acima se refere ao erro de teste!

p

* O erro de treinamento esperado é (1 —£) 0?, enquanto o erro de teste esperado é

20%p

(1 + 5) o2. Isso mostra que o erro de treinamento subestima o erro de teste em ==

caracterizando o overfitting. Essa diferenca pode ser usada para selecdo de modelos.

* Para que o risco excessivo seja pequeno comparado a ¢?, é necessdrio que £ seja

pequeno. Isso dificulta a aplicagdo direta de minimos quadrados em situagdes de alta
dimensionalidade, onde p ~ n ou p > n. Nesses casos, técnicas de regularizagao,
como regressao ridge ou penaliza¢gdes com norma-/;, sdo necessdrias.

3.4 Um pouco de inferéncia

Perceba que a teoria acima ndo depende de informagdes sobre os dados — a tnica coisa que
fizemos foi encontrar a melhor aproximacdo de y no espago gerado pelas colunas de X. Ou seja,
tratamos X e y como vetores fixos, e a projegdo ortogonal Pra, xy € puramente uma construgao
geométrica.

Suponha agora que temos um modelo probabilistico associado aos dados:
Y= (xpB)+e e~N(01),

onde x € IR? é um vetor fixo (ndo aleatério), p € IR? é o vetor de parametros desconhecido, e € é

um erro aleatdério com distribuigdo normal padrao.

Se coletamos n observagdes (x;,Y;), i = 1,...,n, podemos escrever o modelo vetorialmente
como:
y=Xp+e
onde:

¢ y € R" é o vetor de respostas;

e X € R"*P é a matriz cujas linhas sdo os vetores xiT;

e ¢~ N(0,I,) é o vetor de erros independentes com varidncia 1.
Neste caso, a estimativa de minimos quadrados:

p=(X"X)"'X"y

é também o estimador de mdxima verossimilhanca de f sob o modelo gaussiano. Além disso, por ser
combinagdo linear de varidveis gaussianas,  é também uma varidvel aleatéria com distribuigao

normal.
Teorema 1. Se y = XB +¢, com e ~ N(0, I,), entdo:

B=(xXX)"' Xy~ N (g (x*X)7).
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Demonstragio. Note que:
B=(X*X)"1X*y = (X*X)"IX*(XB+¢) = B+ (X*X) 1 X*e.
Como ¢ ~ N(0,I,), e (X*X) "1 X*e é uma combinacdo linear de gaussianas, ento:
B~N (/3, (X*X)—lx*x(x*x)—l) =N (/3, (X*X)—1> .
O

Essa propriedade permite que fagcamos inferéncia estatistica sobre os coeficientes . Por exem-
plo, para testar a hipétese nula:
H() : ﬁ] = O,

podemos usar o fato de que:
Bj ~ N(Bj,07), coma? =[(X*X)'];.

Ou seja, o valor padronizado

Z; = —*= ~ N(0,1) sob Hy.

Isso nos permite construir intervalos de confianga e calcular valores-p.

Exemplo 2. Suponha que queremos um intervalo de confianga para B; com nivel de confianga 1 — «. Como
B]- ~ N(Bj, (7].2), temos:

P (3]' —Za/20\/07 < Bj < B +Za/z\/0]2) =1-ua
onde z, /5 é o quantil superior de ordem 1 — a /2 da normal padrio.

Para mais detalhes sobre inferéncia de parametros, ver (James et al., 2013, Capitulo 3).

Bibliografia

Bach (2024)



Capitulo 4

Introducao a classificacao via regressao
logistica

4.1 Classificador de Bayes

Sejam (X1,Y1),...,(Xn, Yu) amostras independentes e identicamente distribuidas, onde X; € R”
representa um vetor de caracteristicas e Y; € {0,1} é o rétulo associado. O objetivo é construir
um classificador ¢ : R” — {0,1} que prediga Y a partir de X.

Uma forma comum de avaliar o desempenho de um classificador g é por meio da fungao de
perda 0-1, definida por

0, seg(x)=y,

1, caso contrario.

L(g(x),y) = {
O risco verdadeiro associado a g é dado por

R(g) = E[L(g(X),Y)],

onde a esperancga é tomada em relagdo a distribui¢do conjunta de (X, Y).
Como vimos anteriormente, no contexto de regressdo com perda quadratica, a funcao 6tima
é dada por
¢ (x) =E[Y| X =x],

isto é, a média condicional de y dado X.
No caso de classificagdo binaria com perda 0-1, a fun¢do 6tima assume uma forma diferente.
Vamos agora investigar qual é a forma da funcdo ¢g* que minimiza o risco verdadeiro.

Teorema 2 (Classificador de Bayes e risco 0-1). Seja 7(x) = P(Y =1 | X = x). O classificador de

Bayes ¢* é definido por
i 1, sen(x)>05,
g (x) =

0, caso contrdrio.

Denotamos por R* o menor risco verdadeiro possivel, isto é,
R* =infE[L(g(X),Y)].
8
Entdo, valem os sequintes resultados:

29
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(a) R(h*) = R*, ou seja, h* minimiza o risco verdadeiro e é um classificador de Bayes.
(b) Para qualquer classificador h, o excesso de risco satisfaz
R(h) = R* = 2Ex [|n(X) = 0,5 - I{h(X) # " (X)}].
Demonstragio. Item (a). Note que
E[L(g(x), Y)] = E[L{g(X) # Y}]
= Ex [E[I{g(X) # Y} [X = «]].
Vamos analisar a expressdo dentro da esperanga condicional em X. Temos:
E[l{g(X) #Y} [ X =x] =P(g(X) # Y | X = x)

PO#Y [ X=x){g(x) =0} +P(1# Y| X =x)I{g(x)
P(Y=1]|X=x)I{g(x) =0} +P(Y =0 | X = x) I{g(x)

7(x) I{g(x) = 0} + (1 — 5(x)) I{g(x) = 1}.

Nosso objetivo é encontrar a fungdo ¢ que minimiza essa expressdo. Para isso, basta decidir,

}

=0 1
=0 1}

para cada x, se devemos escolher g(x) = 0 ou g(x) = 1. Analisamos caso a caso:

* Sen(x) > 0,5, entdo 1 — (x) < y(x). Nesse caso, a expressdo é minimizada escolhendo

g(x) =1, pois isso anula o termo com #(x), restando apenas o menor entre os dois.
* Sen(x) <05, entdo 7(x) < 1—1n(x), e a expressdo é minimizada com g(x) = 0.

Portanto, a fungdo ¢* definida no teorema de fato minimiza o risco verdadeiro, o que conclui
a demonstragdo do item (a).
Item (b). Queremos mostrar que, para qualquer classificador g,

R(h) = R* = 2Ex [[7(X) = 0,5] - I{h(X) # h*(X)}].
Comecamos com a defini¢do do excesso de risco:
R(h) = R(g") = Ex [n(X) I{g(X) = 0} 4+ (1 — (X)) I{g(X) = 1}]
— Ex [n(X) {g" (X) = 0} + (1 — (X)) I{g"(X) = 1}].

Note que a expressdo dentro da esperanca é nula quando g(x) = ¢*(x), logo sé precisamos
analisar o que acontece quando g(x) # g*(x).

* Se g*(x) =1, s6 precisamos analisar o caso de g(x) = 0 e dai temos que
R(r) = R(g") = Ex [n(X) I{g(X) = 0} + (1 - (X)) {g(X) = 1}]
— Ex [(X) I{g*(X) = 0} + (1 — (X)) I{g"(X) = 1}]

= —(1=n(X)) +71(X)
=2n(x) — 1.

Note que como assumimos que ¢*(x) = 1, entdo 5(x) > 0.5 e portanto 27(x) —1 > 0.
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* Se ¢g*(x) =0, concluimos de forma andloga que

R(h) = R(g") =1 —27(x).

Nesse caso, como g*(x) = 0, temos que 77(x) < .5 e dessa forma 1 —2#5(x) > 0. De fato,
podemos expressar a solucdo de forma geral na seguinte forma:

R(h) = R* = 2Ex [[n(X) = 0,5] - I{h(X) # h*(X)}].

Isso prova o item (b).

A expressao do item (b) nos d4 uma intuicdo importante: o excesso de risco é mais sensivel
a erros de classificacdo quando 7(X) estd longe de 0.5, ou seja, quando a incerteza sobre a
classe é baixa. Nesses pontos, errar significa contrariar uma alta confianga, o que resulta
em um aumento maior no risco. Por outro lado, se #7(X) estd proximo de 0,5, mesmo que
2(X) # ¢*(X), o impacto no risco é pequeno. Assim, o termo |#(X) — 0,5 atua como um
peso que penaliza mais fortemente os erros onde a decisdo 6tima é mais evidente.

4.1.1 O Modelo Logistico

Uma vez entendido o papel da funcido #(x) = P(Y =1 | X = x) como componente central da
regra de Bayes, torna-se natural buscar maneiras de aproximar essa fun¢do a partir dos dados
via um estimador g. Um dos modelos mais classicos para esse fim é a regressao logistica.

A ideia é modelar diretamente a probabilidade condicional P(Y = 1 | X = x) como uma
funcdo dos preditores. Um primeiro impulso seria utilizar um modelo linear do tipo g(x) =
(B, x), mas essa abordagem apresenta um problema fundamental: a fun¢do linear pode assumir
valores fora do intervalo [0, 1], o que é inaceitavel para probabilidades.

Para contornar essa limitagdo, adotamos uma funcdo que mapeia qualquer valor real para o

intervalo (0,1). Na regressdo logistica, usamos a fungao logistica:

_ e(Bx)
g(X) - 1+ €<'B’x> :
E facil ver que
1
1 _g(x) = 1 _l_e(ﬁ,x)'

Essa formulagdo garante que g(x) € (0,1) para todo x € RP. Podemos reescrever essa
expressao como
8(x) — pB)
1-g(x)
A razdo g(x)/[1 — g(x)] é chamada de odds e pode assumir qualquer valor entre 0 e co.
Valores de odds préximos de 0 indicam probabilidades muito baixas, enquanto valores muito
altos indicam alta probabilidade da classe positiva. Por exemplo, g(x) = 0,2 implica uma odds
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de % = 1/4, o que corresponde a 1 em cada 5 individuos da classe positiva. J& g(x) = 0,9

implica uma odds de % =9, ou seja, 9 em cada 10.
Odds sao tradicionalmente usadas em vez de probabilidades em contextos como apostas, pois
se relacionam mais diretamente com estratégias de decisdo.

Tomando o logaritmo de ambos os lados da expressdo anterior, obtemos:

log <1§(;()x)> = (B, x).

A expressao a esquerda é chamada de log odds ou logito. Observamos, assim, que o modelo de

regressao logistica possui um logito linear em x, 0 que permite tanto uma interpretagao estatistica
clara quanto facilidade de ajuste computacional.

4.1.2 Estimando os Coeficientes da Regressao

Os coeficientes B no modelo logistico sao desconhecidos e devem ser estimados a partir dos
dados de treinamento disponiveis. Embora uma abordagem possivel seja o uso de minimos
quadrados ndo lineares, o0 método mais comum e preferido é o de mdxima verossimilhanga, por
apresentar melhores propriedades estatisticas.

A intuigdo bdsica por trds do uso da maxima verossimilhanga para ajustar um modelo de
regressao logistica é a seguinte: buscamos encontrar um vetor f tal que a probabilidade predita
¢(x;) para cada observagdo se aproxime o méximo possivel dos valores reais observados Y; €
{0,1}.

Em outras palavras, queremos que ¢(x;) ~ 1 para os individuos com Y; = 1, e §(x;) ~ 0 para
os individuos com Y; = 0. Essa ideia pode ser formalizada por meio de uma fungdo chamada
fungdo de verossimilhanga, dada por:

() =TT &Cx:) T[T (1 —glx)).

i:Y;=1 i:Y;=0

Mais especificamente, podemos reescrever a funcdo de verossimilhanca como:

n e,BO +Zf:1 lBiXk,j Yk 1 17yk
,1:[1 1+ eﬁ0+2,p:1 Bixx,i <1 + eﬁo+2f:1 Bixy,i > ’

Essa forma incorpora tanto os casos em que Yy = 1 quanto Yy = 0 em uma tinica expressao

compacta.
Tomando o logaritmo da fungdo de verossimilhanga, obtemos a log-verossimilhanga:

n ePo+ L Bixk
log£(B) =), [yklog ( - ) + (1 —yk)log( ! )] '

= 14+ eBo+ L Bix 14+ eBoT Ly B

Simplificando os logaritmos, essa expressdo pode ser reescrita como:

log ¢(B) = Z [yk<ﬁ, xy) — log (1 + e<’“”""f>)} ,

k=1

onde x; € R? inclui o termo de intercepto (ou seja, supomos x; = (1, x¢1,...,xcq)) € B € RFL
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4.2 Um pouco de otimizacao - O método de Newton

Antes de maximizar a log-verossimilhanga, introduzimos o Método de Newton. O Método de
Newton é um algoritmo iterativo usado para encontrar raizes de uma funcdo. No caso univari-
ado, sua implementagdo segue os seguintes passos:

1. Encontre a reta tangente a fun¢do f(x) no ponto atual (x,,y,), com:
y = f(xn)(x = xu) + f(2xn).

2. Calcule a intersecdo da reta tangente com o eixo x, isto é, determine x,,;1 tal que f(x,11) =
0. Para isso, impomos:

0= f(xn)(Xns1 — xu) + f(xn),

o que resulta em:

f(xn)

T )

3. Avalie a fun¢do no novo ponto:

Yn41 = f(xn+1)-
4. Verifique o critério de parada: se y,4+1 — y» ~ 0, entdo:

return y,4+1 (convergéncia atingida).

5. Caso contrario, atualize o ponto:

Xn < Xn+1, Yn — Yn+1,

e volte ao passo 1.

Para uma ilustragdo, ver o seguinte gif.
Em resumo, o Método de Newton para uma varidvel consiste em atualizar iterativamente o
ponto atual segundo a férmula

f(xn)

T )
n

até que a diferenga entre x, e x,,41 seja suficientemente pequena, isto é, até que |x, — x,41| =~ 0.

Esse procedimento corresponde a encontrar o ponto onde a fung¢do f se anula, aproximando-se
da raiz por meio das tangentes locais.

Se f é uma funcdo fortemente convexa com hessiana Lipschitz continua, entdo, desde que o
ponto inicial x( esteja suficientemente proximo de x, = argmin f(x), a sequéncia xo, X1, X2, . . .
gerada pelo Método de Newton converge para o minimizador (necessariamente tinico) x, de f
com taxa de convergéncia quadrética.

Embora o Método de Newton seja frequentemente apresentado como um algoritmo para
encontrar raizes de fungdes (isto é, solugdes de f(x) = 0), ele também pode ser usado para
encontrar pontos criticos de uma fungdo f: RY — R, ou seja, pontos onde o gradiente V f(x) se

anula.


https://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif
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Para maximizar uma fun¢do f, podemos aplicar o Método de Newton a equagdo Vf(x) = 0.

Nesse caso, a atualizacdo iterativa assume a forma:

X1 = — [V2F(x)] ' VF(x),

onde Vf(x;) é o gradiente de f no ponto x;, e V2f(x;) é a hessiana (a matriz de derivadas
segundas).

Se a matriz hessiana for negativa definida, entdo x; estd em uma vizinhanga de um ponto de
maximo local de f, e a iteragdo de Newton caminha nessa direcdo. O método é particularmente
eficiente quando f é suave (duas vezes diferencidvel) e fortemente concava, pois a convergéncia
é rapida e quadratica nas proximidades do méximo.

Em problemas de otimiza¢do como a regressdo logistica, onde queremos maximizar a log-
verossimilhanca, esse procedimento é especialmente util: basta aplicar o Método de Newton a
fungdo log-verossimilhanca log ¢(B) para obter uma sequéncia de estimativas para os coeficientes
B.

Para maximizar a log-verossimilhanca de uma regressao logistica, usamos o Método de New-
ton aplicando-o a fungdo

(B) = Y- [vilp ) —tog (1+P)]
i=1

* Gradiente: o vetor gradiente da log-verossimilhanca em relagio a B € IR¥ ¢ dado por:

VEB) = ) (Yi—g(xi))xi,

M=

Il
—_

Bx) . .y ~
onde g(x;) = 1‘;% é a predigdo do modelo logistico no ponto x;. Essa expressao pode ser

escrita matricialmente como:
T A
VEB) =X (Y =3),
em que X € R"™? é a matriz de design, Y € R" o vetor de respostas e ¢ € R" o vetor das

probabilidades preditas.

¢ Hessiana: a matriz hessiana da log-verossimilhanca é dada por:
V2(B) = —XTWX,
onde W € R"*" é uma matriz diagonal com elementos
Wi = g(xi) (1 = g(xi))-
Exercicio 7. Prove a expressio do gradiente e hessiana em dimensdo 1 e se convenga que vale para dimen-
soes maiores.

Note que a hessiana é negativa definida sempre que 0 < g(x;) < 1, 0 que garante que estamos

maximizando uma fung¢do concava. O método de Newton atualiza os parametros pela regra:

Bt = B — [V2(BY)] ' VLB

No notebook que vocé encontra aqui, apresentamos uma implementagdo do método de New-
ton para resolver o problema de regressao logistica via maximizacao da verossimilhanca.

Exercicio 8. Entenda o cédigo acima.


https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/logistica/newton.ipynb
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4.3 Outras métricas de avaliacao

Nem sempre a fungdo de risco R(g) = E[I(Y # g(X))] = P(Y # g(X)) fornece uma visdo
completa da qualidade de um classificador g. Em certos contextos, como deteccdo de doengas
raras, o risco pode parecer pequeno mesmo quando o desempenho do modelo estd longe do
ideal.

Considere, por exemplo, um cendrio em que Y = 1 representa um paciente doente, e Y = 0,
um paciente sauddvel. Suponha que, numa amostra de 1.000 individuos, apenas 10 estejam
doentes. Um classificador trivial que sempre prediz g(x) = 0 (isto é, que todos sdo saudéveis)
terd risco muito baixo, pois P(Y = 1) é pequena. No entanto, tal modelo falha completamente
em identificar os casos realmente relevantes — os pacientes doentes.

Para melhor avaliar o desempenho de classificadores, especialmente em situagdes de des-
balanceamento de classes, ¢ comum recorrer ao uso de matrizes de confusio, que distinguem

corretamente os diferentes tipos de acerto e erro. A seguir, apresentamos um exemplo tipico:

Predicao Valor real

Y=0 Y=1
g(x) =0 | VN (negativo verdadeiro) FN (falso negativo)
g(x) =1 FP (falso positivo) VP (positivo verdadeiro)

Tabela 4.1: Matriz de confusio.

A partir dessa tabela, podemos definir diversas métricas de desempenho. Uma delas é:

Sensibilidade (ou recall):
VP

VP + FN

que representa a propor¢ao de individuos doentes corretamente identificados pelo classifi-

Sensibilidade =

cador.

¢ Especificidade:
VN
VN + FP

Mede a proporcado de individuos saudédveis corretamente identificados como tais.

Especificidade =

* Valor preditivo positivo (ou precisio):

VP

P=——
VPP = Sp 1op

Indica, entre os exemplos classificados como positivos, quantos de fato sdo positivos.

* Valor preditivo negativo:
VN

~ VN + FN

Representa a propor¢do de negativos corretos entre os exemplos classificados como negati-

VPN

VOS.
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e Medida F1:

Fl— 2 - Recall - Precision

Recall 4 Precision
que é a média harmonica entre sensibilidade (S) e precisdo (VPP), sendo ttil para balancear
ambas as medidas.

Considere novamente o classificador constante g(x) = 0. Neste caso, ele nunca prevé a classe
positiva. Isso resulta em sensibilidade igual a zero (pois nenhum positivo é detectado) e especifi-
cidade igual a um (todos os negativos sdo corretamente identificados). Apesar de apresentar um
bom desempenho segundo a especificidade, esse modelo é incapaz de detectar os casos relevan-
tes (os positivos), tornando seu uso questionével.

Por isso, é fundamental considerar multiplas métricas, principalmente em contextos de dese-
quilibrio entre classes — como em problemas médicos, onde a classe positiva pode representar
uma condigdo rara.

As estatisticas derivadas da matriz de confusdo devem ser interpretadas como estimativas
amostrais de probabilidades condicionais. Por exemplo, a sensibilidade estima P(g¢(X) = 1 |
Y = 1), enquanto a especificidade estima IP(g(X) = 0 | Y = 0). Para garantir validade e evitar

vieses, especialmente sobreajuste, é importante que essas métricas sejam calculadas em uma

amostra separada de teste ou validagao.

4.4 Ajuste do limiar de decisao

Classificadores probabilisticos, como a regressao logistica, produzem uma estimativa da proba-
bilidade condicional g(x) = P(Y = 1 | X = x). Para converter essa predi¢do continua em uma
decisdo bindria (classe 0 ou 1), é necessario escolher um limiar de corte t € [0,1]. O valor padrdo
mais comum é t = 0,5, ou seja, prediz-se a classe positiva sempre que g(x) > 0,5.

No entanto, esse limiar pode ser ajustado de forma estratégica. Em particular, quando as
classes estdo desbalanceadas — por exemplo, se a classe positiva é rara — o uso de um li-
miar padrdo pode resultar em desempenho insatisfatério. Um classificador pode, por exemplo,
raramente atribuir probabilidades maiores que 0,5 a classe positiva, mesmo quando estd relati-
vamente confiante, simplesmente porque a classe é rara nos dados.

Ao reduzir o limiar ¢, tornamo-nos mais propensos a prever a classe positiva, o que tende
a aumentar a sensibilidade (recall) — isto é, aumentamos a chance de detectar os verdadeiros
positivos. Por outro lado, essa mudanca normalmente reduz a precisdo (VPP), j4 que mais
exemplos negativos podem ser erroneamente classificados como positivos.

De modo anélogo, aumentar o limiar tende a aumentar a precisdo, mas a custa da sensibili-
dade.

Limiar ¢ ‘ Recall Precisido
baixo (J f) | alto baixo
alto (1t) | baixo alto

Esse comportamento reflete um trade-off cldssico. Em aplica¢des médicas, por exemplo, pode-
se preferir alta sensibilidade para evitar deixar passar casos positivos, mesmo que isso implique
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em mais falsos positivos. Ja em sistemas de recomendagdo, pode ser mais importante manter alta
precisdo, mesmo que alguns casos positivos sejam perdidos.

Na prética, o limiar ideal pode ser escolhido com base em uma métrica combinada (como F1-
score) ou por andlise da curva ROC ou curva precisdo-recall, conforme os objetivos do problema.

44.1 Escolhendo o limiar de decisido

A escolha do limiar ¢ é, em muitos casos, uma decisdo critica e depende diretamente do contexto
e dos custos associados aos diferentes tipos de erro. Ndo existe um valor universalmente 6timo:
o melhor limiar depende dos objetivos do problema, das consequéncias praticas dos erros e da
distribuigdo das classes. Abaixo exibimos algumas possibilidades para encontar o corte 6timo.

Maximizar F1

Uma forma pratica de selecionar t é por meio da otimizagdo de alguma métrica de desempenho,

como a Fl-score, que busca um equilibrio entre precisdo e recall. O limiar 6timo nesse caso seria:

t* = arg max Fl1-score(t).

Curva ROC

A curva ROC (Receiver Operating Characteristic) é uma ferramenta grafica amplamente utilizada
para avaliar o desempenho de classificadores bindrios. Ela é construida variando o limiar de
decisdo t e observando como isso afeta duas métricas fundamentais:

* Taxa de verdadeiros positivos (TVP) ou sensibilidade:

VP

TVP = —
YP= N

que mede a proporgdo de positivos corretamente identificados.

¢ Taxa de falsos positivos (TFP):
FP

FP + VN’
que mede a proporg¢do de negativos incorretamente classificados como positivos.

TFP =

A curva ROC é um gréfico onde a TFP é colocada no eixo horizontal e a TVP no eixo vertical.
Cada ponto da curva corresponde ao desempenho do classificador para um determinado limiar
t € [0,1].

O comportamento da curva é o seguinte:

¢ Para limiares muito baixos (por exemplo, t =~ 0), o classificador tende a prever quase tudo
como positivo. Isso resulta em uma TVP alta, mas também em uma TFP alta.

¢ Para limiares muito altos (por exemplo, t ~ 1), o classificador quase nunca prevé a classe
positiva. Assim, tanto a TVP quanto a TFP sdo baixas.

e Conforme o limiar varia, a curva se forma conectando esses pares (TFP, TVP).
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Um classificador perfeito atingiria o ponto (0,1), ou seja, sem falsos positivos e com todos os
verdadeiros positivos detectados. Na prética, quanto mais a curva ROC se aproxima do canto
superior esquerdo, melhor é o desempenho do classificador.

Uma métrica associada a curva ROC é a area sob a curva (AUC — Area Under the Curve).
O valor da AUC variade O a 1:

¢ AUC =1 indica um classificador perfeito;
e AUC = 0,5 corresponde a um classificador aleatério (linha diagonal);

* AUC < 0,5 sugere que o classificador esta pior que o acaso (e poderia ser melhorado inver-
tendo as predicoes).

A curva ROC é especialmente ttil quando queremos analisar o comportamento do classifica-
dor sob diferentes limiares, ou quando o custo dos erros de diferentes tipos ndo é simétrico. No
entanto, em contextos com classes desbalanceadas, a curva ROC pode ser menos informativa —
nesses casos, a curva precisao-recall costuma oferecer uma andlise mais sensivel.

Perfect model
True positive rate A

>

False positive rate

Figura 4.1: Curva ROC

Exercicio 9. Acesse esse site aqui e brinque com a simulagdo de escolha de corte para classificagdo.

Curva Precisdo-Recall

A curva precisdo-recall é outra ferramenta grafica fundamental para avaliar classificadores bina-
rios, especialmente em cendrios onde as classes estdo desbalanceadas — ou seja, quando a classe

positiva é muito menos frequente que a negativa.


https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc?hl=pt-br
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Enquanto a curva ROC mostra o trade-off entre sensibilidade (ou taxa de verdadeiros posi-
tivos) e a taxa de falsos positivos, a curva precisdo-recall foca diretamente em duas métricas de
interesse: Precision e Recall.

Para construir a curva, variamos o limiar de decisdo t € [0,1] usado para converter probabi-
lidades em classificagdes, e calculamos os pares (Recall, Precisdo) correspondentes a cada valor
de t. Ao plotar esses pontos no plano, obtemos a curva precisdo-recall.

Quanto mais a curva se aproxima do canto superior direito (alta precisdo e alto recall), melhor
é o desempenho do classificador. A area sob a curva (PR AUC — Precision-Recall Area Under
Curve) pode ser usada como uma medida global de desempenho, assim como a AUC da curva
ROC.

Em cendrios onde a classe positiva é rara, a curva ROC pode dar uma falsa sensacdo de bom
desempenho, pois o classificador pode ter uma taxa de falsos positivos muito baixa simplesmente
porque ha poucos exemplos positivos para errar. Ja a curva precisdo-recall é mais sensivel a esse
tipo de situagdo: ela penaliza mais severamente classificadores que ndo conseguem manter boa

precisdo ao tentar capturar mais positivos.

Very High Threshold, Very High Precision

Lo¥s
0.8
S 06}
@
@
a
0.4
{:}\,‘::l Low Threshold, Low Precision, High Recall
).2
e A
T <\r,,\
0.0 : D
0.0 0.2 0.4 0.6 0.8 1.0 49
|

P Very Low Threshold, Very High Recall [~
Recall

Exercicio 10. Rode o seguinte cédigo e faca alteragdes para se familiarizar com a parte computacional.


https://github.com/thiagorr162/curso_aprendizado/blob/82a28464f529bc3b7141f304687b1fe500880710/notebooks/classificacao/metricas_desempenho.ipynb
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Capitulo 5

KNN

5.1 KNN para classificacao

Idealmente, gostariamos sempre de prever respostas qualitativas usando o classificador de Bayes,
que é 6timo em termos tedricos. No entanto, na prética, ndo conhecemos a distribuigdo condici-
onal de Y dado X, o que torna impossivel a construc¢do direta do classificador de Bayes. Por isso,
ele é tratado como um padrdo-ouro inatingivel, servindo apenas como referéncia para avaliar

outros métodos.

Figura 5.1: KNN com k = 3.

Diversas abordagens tentam estimar a distribuigdo condicional de Y dado X, e classificam
uma nova observacao atribuindo-a a classe com maior probabilidade estimada. Um método simples
e amplamente utilizado é o dos K-vizinhos mais proximos (KNN). Dado um valor de K e uma nova
observagdo xo, o KNN identifica os K pontos mais proximos de xg no conjunto de treinamento.
Denotando esse subconjunto por N, a probabilidade condicional da classe j é estimada como:

. 1 .
PO=j1X=x0) =g L M=)
ieNy

Por fim, o KNN atribui & observagdo x( a classe com a maior probabilidade estimada.
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Por exemplo, suponha que escolhemos K = 3, e que os trés vizinhos mais préximos de xg
sejam dois da classe azul e um da laranja. A probabilidade estimada para a classe azul serd 2/3,
e para a classe laranja, 1/3. Assim, o KNN classificara xo como pertencente a classe azul. Ao
variar K, as fronteiras de decisdo do classificador também mudam.

Apesar de ser uma abordagem bastante simples, o KNN pode gerar classificadores que se
aproximam surpreendentemente bem do classificador de Bayes. Por exemplo, em um conjunto
de dados simulado, com K = 10, o erro de teste do KNN foi de aproximadamente 0.1363, muito
préximo do erro de Bayes, que era 0.1304.

KNN: K=10

Figura 5.2: A curva preta representa a fronteira de decisdo do classificador KNN, utilizando
K =10. A fronteira de decisdo de Bayes ¢é indicada pela linha tracejada roxa. As duas fronteiras
sdo bastante semelhantes.

O valor de K influencia fortemente o desempenho do KNN. Quando K = 1, o modelo se torna
extremamente flexivel, adaptando-se até aos ruidos dos dados — o que resulta em baixo viés,
mas alta variancia. Ja para valores muito grandes de K, o classificador se torna excessivamente
rigido, levando a uma maior taxa de erro devido ao viés elevado. Nesse cendrio, os dados sdo
"suavizados"demais, ignorando padrdes mais sutis.

Essa relacdo entre viés e variancia se manifesta de forma classica no grafico de erro de teste
versus 1/K: a medida que K aumenta, a varidncia diminui e o viés cresce, formando uma curva
em formato de U. O ponto ideal de K é geralmente aquele que minimiza o erro de teste —
frequentemente em torno de K = 10.

Escolher corretamente o nivel de flexibilidade (ou complexidade) do modelo é essencial tanto
em tarefas de regressdo quanto de classificagdo.

Note que dado um ponto de teste x € R, o algoritmo ingénuo compara esse ponto com
todos os pontos do conjunto de treinamento para calcular a resposta prevista. Isso resulta em
uma complexidade de O(np) por ponto de teste em R”. Quando p é grande, esse custo se torna
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Figura 5.3: A taxa de erro de treinamento do KNN (em azul, 200 observagdes) e a taxa de erro

de teste (em laranja, 5.000 observagdes) nos dados da Figura 2.13, a medida que o nivel de
flexibilidade (avaliado por 1/K em escala log

elevado tanto em tempo quanto em memoria. Existem técnicas de indexagdo para busca de vizi-
nhos mais préximos (possivelmente aproximadas), como as chamadas k-d trees, que apresentam
complexidade logaritmica em n (embora com tempo adicional de compila¢do) e uso de memoria

que pode crescer exponencialmente com a dimensao.

Figura 5.4: Diagrama de Voronoi associado ao algoritmo KNN. Cada regido representa o conjunto

de pontos que seriam classificados da mesma forma com base no vizinho mais préximo.
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5.2 KNN para regressao

O método de regressio KNN é bastante semelhante ao classificador KNN. Dado um valor de
K e um ponto de predigdo xp, a regressio KNN identifica as K observagdes de treinamento
mais proximas de xp, representadas por Ny. Em seguida, estima f(xo) utilizando a média das
respostas correspondentes. Em outras palavras,

fo) = ¥ v
x;€Ny
A figura abaixo ilustra dois ajustes do KNN sobre um conjunto de dados com p = 2 predi-
tores. O ajuste com K = 1 aparece no painel a esquerda, enquanto o painel da direita mostra o
ajuste com K = 9. Observa-se que, para K = 1, o KNN interpola perfeitamente as observagdes de
treinamento, resultando em um ajuste com descontinuidades abruptas. Para K = 9, o ajuste con-
tinua sendo uma fungdo por partes, mas o uso da média sobre nove vizinhos suaviza as regides

constantes, produzindo uma predi¢do mais suave.

Figura 5.5: Knn para conjunto de 64 pontos. Do lado esquerdo K = 1 e do lado direito K = 9.

De modo geral, o valor ideal de K estd ligado ao compromisso entre viés e varidncia. Um
valor pequeno de K resulta em um modelo altamente flexivel, com baixo viés mas alta varidncia,
pois a predigdo em uma dada regido depende fortemente de uma tnica observagdo. J& valores

maiores de K reduzem a variancia, mas podem aumentar o viés.

5.3 O que é treinado no KNN?

Diferentemente de muitos algoritmos de aprendizado supervisionado, o K-Nearest Neighbors
(KNN) néo realiza um processo explicito de treinamento no sentido tradicional de ajustar pa-
rametros internos a partir dos dados. No KNN, o chamado treinamento consiste simplesmente
em armazenar o conjunto de dados de treino, ou seja, memorizar os pares (X;, Y;).

Durante a fase de predi¢do, dado um novo ponto X, o algoritmo identifica os K pontos mais
proximos entre os dados armazenados, com base em uma medida de distancia (como a distancia



5.4. REGRESSAO LINEAR VS. KNN 45

Euclidiana). Em seguida, para tarefas de regressdo, a predicdo é obtida calculando a média (ou
outro agregador) dos valores Y; correspondentes a esses vizinhos. Para tarefas de classificagdo, a
predicdo é feita atribuindo a classe mais frequente entre os vizinhos.

Assim, o KNN é considerado um método lazy learner, pois posterga todo o trabalho de gene-
ralizagdo até o momento da predicdo, ao contrdrio de métodos como regressdo linear ou redes

neurais, que constroem um modelo explicito durante o treinamento.

5.4 Regressao Linear vs. KNN

Em que situagdes a regressdo linear — uma abordagem paramétrica — supera métodos nado pa-
ramétricos como o KNN? A resposta é simples: uma abordagem paramétrica terd melhor desempenho
se sua forma funcional estiver préxima da verdadeira relagdo entre as varidveis.

A figura abaixo mostra um exemplo com dados gerados a partir de um modelo linear uni-
dimensional. As linhas pretas representam a fungdo verdadeira f(X), enquanto as curvas azuis
indicam os ajustes feitos pelo KNN com K =1 e K = 9. O ajuste com K = 1 é muito irregular,
enquanto o ajuste com K = 9 é bem mais suave e se aproxima melhor da fun¢ao real.

Figura 5.6: Ajustes de f(X) usando regressio KNN em um conjunto de dados unidimensional
com 50 observagdes. A relacdo verdadeira é representada pela linha preta continua. Esquerda:
A curva azul corresponde a K = 1 e interpola os dados de treinamento, passando exatamente
pelos pontos. Direita: A curva azul corresponde a K = 9 e fornece um ajuste mais suave.

Como a relagdo subjacente é linear, é dificil para um método ndo paramétrico competir. A
flexibilidade extra do KNN aumenta a varidncia da predi¢do, sem uma compensac¢do no viés.
A linha azul tracejada na figura abaixo representa o ajuste feito por regressdo linear — quase
perfeito nesse caso. O painel da direita da mesma figura mostra que a regressdo linear supera
o KNN em termos de erro médio quadratico (MSE) de teste. A linha verde na figura representa
esse erro do KNN conforme o valor de 1/K. Os erros do KNN sdo consistentemente maiores
que os da regressdo linear, exceto quando K é grande, situagdo em que o desempenho do KNN
se aproxima do da regressdo linear. No entanto, com K pequeno, o KNN tem desempenho
significativamente pior.
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Figura 5.7: Esquerda: A linha tracejada azul representa o ajuste por minimos quadrados. Como
f(X) é de fato linear (representada pela linha preta), a regressdo linear fornece uma excelente
estimativa de f(X). Direita: A linha horizontal tracejada indica o erro quadratico médio (MSE)
de teste da regressdo linear, enquanto a linha verde continua mostra o MSE do KNN como fungdo
de 1/K (em escala logaritmica). A regressdo linear alcanga um erro de teste menor que o KNN,
pois a relagdo é linear. No caso da regressio KNN, os melhores resultados ocorrem para valores
altos de K, o que corresponde a valores pequenos de 1/K.

Na prética, a relacdo entre X e Y raramente é exatamente linear. A figura abaixo explora o de-
sempenho da regressdo linear e do KNN em situa¢des com diferentes niveis de ndo-linearidade.
Quando a relagdo verdadeira é quase linear (linha superior), a regressao linear mantém o menor
erro de teste. Conforme a ndo-linearidade aumenta (linha inferior), o KNN supera substancial-
mente a regressdo linear em todos os valores de K. Note que o0 MSE do KNN permanece estavel,
enquanto o da regressdo linear cresce significativamente. Esse comportamento ressalta que, em

contextos ndo lineares, métodos ndo paramétricos podem ser preferiveis.



5.4. REGRESSAO LINEAR VS. KNN 47

2 T |7l| o = | -
[=1
L
= 1
L]
[ == B S
. =R i
o~
. g
=]
S £ 21
=
m
w =
- o
==
=
= |
=
n S -
= T T T T 1 T T L]
-10 -0.5 L] 0.5 1.0 0z 05 1.0
X 17K
2
B o=
s -4
w (=1
=]
- 2
[~ -
i -
-= =
s
= T T T
0z 05 10

Figura 5.8: Acima a esquerda: Em um cendrio com relacdo levemente ndo linear entre X e Y
(linha preta continua), sdo exibidos os ajustes do KNN com K = 1 (azul) e K = 9 (vermelho).
Acima a direita: Para esse caso levemente ndo linear, mostra-se o erro quadratico médio (MSE)
de teste para a regressdo linear (linha preta horizontal) e para 0 KNN com diferentes valores de
1/K (linha verde). Abaixo a esquerda e a direita: Como no painel superior, mas considerando

agora uma relagao fortemente ndo linear entre X e Y.

O exemplos anteriores mostram que o KNN tende a ter desempenho ligeiramente inferior
a regressdo linear em relagdes lineares, mas muito superior quando a relagdo é ndo-linear. Em
situagdes reais, como geralmente ndo conhecemos a forma da relagdo verdadeira, o KNN pode
ser uma escolha segura: no pior caso, serd apenas ligeiramente inferior a regressao linear, mas

pode superar substancialmente em casos nao-lineares.

Exercicio 11. Entender o cédigo aqui.

Vale destacar que ambas as figuras consideram apenas o caso com p = 1 preditor. Em
dimensdes mais altas, 0o KNN tende a ter desempenho pior que a regressao linear, devido
a maldicao da dimensionalidade.



https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/knn/knn.ipynb
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Capitulo 6

Modelos baseados em arvores

Neste capitulo, descrevemos os métodos baseados em arvores para tarefas de regressdo e clas-
sificagdo. Essas abordagens consistem em estratificar ou segmentar o espago dos preditores em
um ntmero reduzido de regides simples. Para fazer uma predicdo em uma nova observacao,
utilizamos geralmente a média (em regressdo) ou a moda (em classificagdo) das respostas das
observagdes de treinamento que pertencem a mesma regido. Como as regras de divisdo utiliza-
das podem ser representadas na forma de uma &rvore, essas abordagens sdao conhecidas como
métodos de drvore de decisdio.

6.1 Arvores de decisdao

Os métodos baseados em arvores sdo simples e de facil interpretagdo. No entanto, muitas vezes
ndo alcangam o mesmo desempenho preditivo que os melhores métodos supervisionados. Por
isso, além das &rvores de decisdo, introduzimos também técnicas como bagging, florestas aleatérias,
boosting e Bayesian additive regression trees.

Essas técnicas envolvem a construgdo de multiplas drvores que, em seguida, sdo combinadas
para gerar uma predicdo por consenso. Veremos que, embora a combinagdo de muitas drvores
possa resultar em ganhos expressivos de acurdcia preditiva, isso costuma vir acompanhado de
uma redugdo na interpretabilidade do modelo.

O processo de construcdo de uma arvore de regressdo pode ser dividido, grosseiramente, em

duas etapas:

1. Dividimos o espago dos preditores — isto €, o conjunto de valores possiveis para X1, Xp,..., X,

— em | regides distintas e ndo sobrepostas, Ry, Ry, ..., Rj.

2. Para cada observagdo que cai em uma regido R;, fazemos a mesma predicdo, que consiste
simplesmente na média das respostas Y; associadas as observagoes de treino que pertencem

aquela regido.

Por exemplo, suponha que, na Etapa 1, obtemos duas regides, R; e Ry. Se a média das
respostas nas observagdes de treino de R; é 10, e em R; é 20, entdo para uma nova observagao x:
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Figura 6.1: Uma possivel particdo usando arvores

A 10, sex € Ry,
Y =
20, sex € Rs.

Na pratica, as regides Ry, ..., Rj sdo escolhidas como retingulos de alta dimensdo (chamados
boxes) por simplicidade e facilidade de interpretacdo. O objetivo é minimizar a soma dos erros
quadraticos (RSS):

J
Yo ) (vi—ir)? 6.1)

onde ij é a média das respostas das observagdes de treino em Rj.

6.1.1 Divisdao Binaria Recursiva

Como é computacionalmente invidvel testar todas as possiveis parti¢gdes, adotamos uma aborda-
gem gulosa (greedy) e de cima para baixo (top-down), conhecida como divisdo bindria recursiva.
A cada passo, escolhemos a melhor divisdo possivel naquele momento, sem necessariamente
garantir que seja a melhor arvore globalmente.

Para realizar a divisdo bindria recursiva, escolnemos um preditor X; e um ponto de corte s

tal que a divisdo do espago dos preditores em duas regides,

Ri(j,s) = {X|X;<s} e Roj,s) = {X|X; >s},
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gere a maior reducdo possivel no erro quadrético (RSS). O objetivo é encontrar os valores de

j e s que minimizem:

Yo wi—gr)+ )Y (iR
i:x;€R1(j,5) i:x;€R2(j,5)

onde g, e Jr, sdo as médias das respostas nas regides correspondentes.

Esse processo é feito de forma gulosa: a cada passo, procuramos a melhor divisdo possivel
localmente, sem considerar futuras divisdes. Comeg¢amos com toda a base de dados como uma
Unica regido e, a cada iteragdo, escolhemos a divisdo que mais reduz o RSS. Ao invés de dividir
sempre 0 espago completo, passamos a dividir uma das regides existentes.

O processo continua até que algum critério de parada seja atingido, como por exemplo:
nenhuma regido contendo mais que cinco observagoes.

X Xy

R R, Ry \

Figura 6.2: Cima a esquerda: Uma particdo do espaco bidimensional dos preditores que nado
poderia ser obtida por divisdo bindria recursiva. Cima a direita: Resultado de uma divisdo
binéria recursiva em duas dimensoes. Embaixo a esquerda: Arvore de decisdo correspondente
a partigdo mostrada acima a direita. Embaixo a direita: Superficie de predigdo correspondente a
arvore, destacando os degraus definidos pelas regides.

Uma vez criadas as regides Ry,...,Rj, a predicdo para uma nova observacdo é dada pela
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média das respostas das observagdes de treinamento que pertencem a mesma regido.

6.1.2 Poda de Arvores (Tree Pruning)

O processo de divisdo recursiva pode produzir boas predi¢des no conjunto de treinamento, mas
tende a sofrer com overfitting, levando a um mau desempenho no conjunto de teste. Isso ocorre

porque a arvore resultante pode ser complexa demais.

2

Uma arvore menor, com menos divisdes (isto é, com menos regides Ry, ..., Rj), pode ter
menor varidncia e interpretagdo mais simples, ao custo de um leve aumento de viés. Uma
alternativa ao crescimento total da &rvore é interromper o processo quando a redugdo no RSS
(soma dos erros quadraticos) gerada por uma divisdo ndo ultrapassar um certo limiar.

Uma abordagem mais eficaz é crescer uma arvore grande Ty, e depois podé-la para obter uma
subdrvore. A meta é selecionar a subdrvore que leva ao menor erro de teste. Podemos estimar
esse erro usando validagdo cruzada ou um conjunto de validagao.

No entanto, como o nimero de subdrvores possiveis é muito grande, utilizamos o método
de poda por complexidade de custo (ou cost-complexity pruning, também chamado weakest link
pruning).

Definimos uma sequéncia de arvores indexadas por um parametro de ajuste « > 0. Para cada

valor de &, escolhemos a subarvore T C Ty que minimiza:

i
Y. Y (vi—ir)?+alT], (8.4)
X €ERy

m=1

onde:

|T| é o nimero de nos terminais (ou regides) da subarvore T,

* R, é aregido associada ao m-ésimo né terminal,

Jr,, € a média das respostas em R,
* « penaliza drvores mais complexas.

Quando a = 0, essa equagdo reduz-se ao erro de treinamento. A medida que a# aumenta, a

penalizagdo por complexidade aumenta, favorecendo arvores menores.

O aumento de a causa a poda sucessiva dos galhos da drvore Ty, de forma aninhada e previ-
sivel. Podemos entdo selecionar o melhor valor de a usando validag¢éo cruzada.

Uma vez escolhido &, a subérvore correspondente é entdo treinada no conjunto completo.
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Algorithm 1 Construcao de uma Arvore de Regressdo com Poda

1: Use divisdo bindria recursiva para crescer uma arvore grande no conjunto de treino, parando
apenas quando cada né terminal tiver menos que um nimero minimo de observagoes.
2: Aplique a poda por complexidade de custo (cost complexity pruning) a arvore grande, gerando
uma sequéncia de subdrvores 6timas em fungdo de «.
Use validagdo cruzada com K blocos para escolher a:
for cada blocok=1,...,K do
(a) Repita os Passos 1 e 2 usando todos os dados exceto o k-ésimo bloco.
(b) Avalie o erro quadratico médio de predi¢do no k-ésimo bloco, como fungédo de «.
end for

Para cada valor de «, calcule o erro médio nos K blocos e selecione 0 # que minimiza esse
erro médio.
9: Retorne a subdrvore do Passo 2 correspondente ao « escolhido.

Exercicio 12. Alterar o cédigo aqui para usar k-fold.

6.1.3 Arvores de Classificacio

Uma drvore de classificagio é muito parecida com uma arvore de regressdo, com a diferenca de
que ela é usada para prever uma resposta qualitativa em vez de uma quantitativa. Em uma
arvore de regressdo, a resposta prevista para uma observacdo é a média das respostas Y das
observagdes de treinamento que pertencem ao mesmo noé terminal. Ja no caso de uma arvore de
classificacdo, a previsdo corresponde a classe mais frequente entre as observagdes de treinamento
do no6 terminal. Além de determinar a classe predita para cada regido terminal, também é comum
analisar as proporgoes das classes entre as observagdes de treinamento que caem em cada regido.
O processo de construcdo de uma arvore de classificagdo é bastante similar ao utilizado em
arvores de regressdo, baseando-se em divisdes binarias recursivas. No entanto, como estamos
lidando com varidveis qualitativas, ndo podemos usar a soma de quadrados residual (RSS) como
critério para realizar as divisdes. Uma alternativa natural ao RSS é a taxa de erro de classificagio,
que mede a propor¢do de observagdes em uma regido que nado pertencem a classe mais frequente.

Formalmente, ela é dada por:
E=1-— m]?x Pk (6.2)

onde p,, representa a proporgdo de observagdes de treinamento na regido m que pertencem a
classe k.

Apesar de sua simplicidade, a taxa de erro de classificagdo ndo é suficientemente sensivel
para orientar o crescimento da drvore de maneira eficiente. Por essa razdo, outras duas métricas
sdo geralmente preferidas. A primeira é o indice de Gini, definido como:

G=Y_ Pur(1—Pumi) (6.3)

O indice de Gini mede a variabilidade total entre as K classes. Ele assume valores baixos quando
as proporgdes P, estdo proximas de zero ou um, indicando que o né é puro.


https://github.com/thiagorr162/curso_aprendizado/blob/main/notebooks/arvores/poda.ipynb
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Outra medida bastante utilizada é a entropia, que é dada por:
K
D ==Y puclog pu (6.4)
k=1

Assim como o indice de Gini, a entropia também assume valores pequenos quando o né é puro.
De fato, os valores numéricos do indice de Gini e da entropia costumam ser bastante préximos.

Na pratica, ao construir uma &rvore de classificagdo, costuma-se utilizar o indice de Gini ou
a entropia para avaliar a qualidade de uma divisdo, ja que essas métricas sdo mais sensiveis a
pureza dos nés do que a taxa de erro de classificagdo. Qualquer uma dessas trés métricas pode
ser empregada no processo de poda da drvore. No entanto, quando o objetivo final é maximizar
a acurdacia de predicdo da arvore final, a taxa de erro de classificacdo geralmente é preferida para
guiar a poda.

Calculo pratico de Gini e Entropia

Suponha que, em um né m, existam 10 observagdes distribuidas entre duas classes: Classe 0 com
4 observagdes e Classe 1 com 6 observagdes. Assim, as propor¢des de cada classe sdo:

4 6

%) = — = 4 3] = — = .
Pm,O O/ 7 Pm,l 10 016

O indice de Gini é definido por:
K
G= Z Pk (L = Ponkc)-
k=1
Para este exemplo, temos:
G=(04)(1-04)+(06)(1-06)=04x0,6+0,6x0,4=0,24+0,24 =048.
A entropia é dada por:
K
D == Puklog, P
k=1

Logo:
D = —(0,4lo0g,(0,4) +0,610g,(0,6)) .

Calculando os logaritmos:
log,(0,4) ~ —1,3219, log,(0,6) ~ —0,73697.
Portanto:
D=-(04x(-13219)+0,6 x (—0,73697)) = —(—0,52876 — 0,44218) = 0,97094.

Como exemplo extremo, considere um né puro com apenas observagdes da Classe 1. Neste

caso, temos:

Pmo =0, Pm1=1
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Assim, o indice de Gini sera:

G=0x(1-0)+1x(1-1)=0,

e a entropia sera:
D = — (0 xlog(0) +1 x log(1)) = 0.

Na notagdo p,, o indice m representa o nd terminal considerado e k indica a classe. Por

exemplo, P30 é a proporgdo de observagdes da classe 0 no né 3.

Vamos fazer um exemplo completo. Considere o seguinte conjunto de dados:

X | Classe

1 Azul

2 | Vermelho
3 Azul

4 | Vermelho
5 Azul

Suponha que realizamos um corte em X = 3,5.
Os dados ficam divididos da seguinte forma:

* Grupo a esquerda (X < 3,5): observagdes {1,2,3}, contendo 2 Azuis e 1 Vermelho. A
proporgao de Azuis é p = 3, resultando em um indice de Gini:

2\2 /1\? 4

e Grupo a direita (X > 3,5): observagoes {4,5}, com 1 Azul e 1 Vermelho. A proporg¢do de
Azuis é p = %, e o indice de Gini é:

1\? /1\?
Gdir:1_<2> _<2) =0,5.

O indice de Gini ponderado da divisao é:

G= % - 0,444 + % -0,5 = 0,466.

Durante o crescimento da drvore, nosso objetivo é realizar divisdes que minimizem o Gini ou
a entropia, ja que valores baixos dessas métricas indicam maior pureza dos nés. Portanto, entre
todas as divisdes possiveis, escolhe-se aquela que leva ao menor valor de Gini ou entropia nos

nos resultantes. Isso equivale a buscar o maior ganho de pureza apés o corte.

Intuitivamente, o indice de Gini e a entropia sdo medidas da impureza de um né. Ambas
indicam o qudo misturadas estdo as classes dentro do né. Quando todas as observagdes no né
pertencem a mesma classe, dizemos que o né é puro, e tanto o Gini quanto a entropia valem
zero. A medida que a mistura entre as classes aumenta, os valores de Gini e entropia aumentam.

O indice de Gini pode ser interpretado como a probabilidade de uma classificacdo errada se
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atribuirmos aleatoriamente uma classe a uma observagdo do nd, com base nas propor¢des das
classes. J4 a entropia mede a quantidade de incerteza ou informagio necessaria para descrever a
classe de uma observacdo do né. Noés com alta entropia tém alta incerteza, enquanto nés com
baixa entropia contém observag¢des predominantemente de uma tnica classe.

Considere uma varidvel aleatéria Y que assume valores em um conjunto finito J =
{y1,Y2,...,yx}, com probabilidades associadas p1,pz,...,px, onde py = P(Y = y;) e
Y X px = 1. A entropia da distribuicio de Y é dada por

K
H(Y)=— kZ prlog, (k).
=1

A entropia mede o grau de incerteza ou imprevisibilidade da varidvel Y. Ela é pequena
quando uma classe domina, com probabilidade préxima de um, e é grande quando as
probabilidades sdo semelhantes entre as classes.

Agora mostramos que a entropia é maximizada quando todas as classes tém a mesma pro-
babilidade. Usamos a desigualdade de Jensen, lembrando que a funcao log,(x) é concava.
Escrevendo a entropia como

H(Y)=E {log2 p(lyﬂ ,

aplicamos Jensen com a variavel aleatéria Z = 1/p(Y), obtendo

H(Y) <log, E [p(ly)} .

A esperanga E[1/p(Y)] pode ser escrita como
1 = i £
E|—| = — = 1=K
=Bk

Portanto,
H(Y) <log, K.

A igualdade ocorre quando py é constante para todos os k, ou seja, quando p; = 1/K. Isso

prova que a distribuicdo uniforme é a que maximiza a entropia.

6.1.4 Arvores versus modelos lineares
Arvores de regressdo e classificagdo apresentam uma natureza bastante diferente em relagdo aos

métodos cldssicos de regressdo e classificacdo discutidos nos Capitulos 3 e 4. Por exemplo, a
regressdo linear assume um modelo do tipo

p
f(X)=Bo+ Z; XiBj,
=
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enquanto uma &rvore de regressdo assume um modelo da forma

onde Ry, ..., Ry representam uma parti¢do do espago de preditores.

Qual abordagem é melhor depende do problema. Se a relacdo entre as varidveis preditoras
e a resposta pode ser bem aproximada por um modelo linear, como na equagdo acima, méto-
dos como a regressao linear tendem a ter bom desempenho e podem superar uma &rvore de
regressdo, que ndo explora essa estrutura linear. No entanto, se a relacdo entre os preditores e a
resposta é altamente ndo-linear e complexa, como indicado pelo segundo modelo, as drvores de
decisdo podem apresentar desempenho superior aos métodos lineares.

Um exemplo ilustrativo é apresentado na Figura abaixo. No primeiro caso, a fronteira de
decisdo real é linear. O modelo linear (painel superior esquerdo) supera a arvore de decisdo
(painel superior direito), que realiza cortes paralelos aos eixos. No segundo caso, a fronteira
de decisdo verdadeira é ndo-linear. O modelo linear falha em capturar a fronteira real (painel
inferior esquerdo), enquanto a drvore de decisdo consegue uma boa separagdo (painel inferior
direito).

[ I o o=
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T o
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R » = o
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L . o
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E importante observar que outros fatores além do erro de teste também podem influenciar a
escolha de um método de aprendizado estatistico. Em algumas situagdes, a interpretabilidade e
a facilidade de visualizagdo podem tornar as drvores uma escolha preferida, mesmo que o erro
de predi¢do ndo seja o menor possivel.
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6.1.5 Vantagens e Desvantagens das Arvores

Arvores de decisdo, tanto para regressdo quanto para classificagdo, possuem diversas vantagens
em relacdo aos métodos classicos discutidos anteriormente.

* Arvores de decisdo sdo, em geral, muito faceis de explicar e interpretar. Muitas vezes, elas
sdo ainda mais intuitivas do que modelos lineares. Alguns autores sugerem que as arvores
refletem melhor o modo como as pessoas tomam decisdes em situagdes praticas.

* Além disso, podem ser representadas graficamente, o que torna sua interpretacdo acessivel

mesmo para ndo especialistas, especialmente quando as arvores sdo pequenas.

* Arvores também lidam de forma natural com preditores qualitativos, sem exigir a criagdo

de variéveis indicadoras (dummies).

* No entanto, as arvores frequentemente ndo atingem o mesmo nivel de acurdcia preditiva
que outros métodos de regressao e classificagdo mais sofisticados.

¢ QOutra limitagdo importante é a instabilidade: pequenas altera¢des nos dados podem levar

a mudangas significativas na estrutura da arvore estimada.

Uma forma de superar essas limitagdes é combinar muitas arvores de decisdo usando mé-
todos como Bagging e Florestas aleatérias. Esses métodos serdo apresentados na préxima secio e
podem melhorar substancialmente o desempenho preditivo das drvores.

6.2 Bagging

As arvores de decisdo discutidas anteriormente sofrem de alta varidncia. Isso significa que, se
dividirmos o conjunto de treinamento em duas partes aleatdrias e ajustarmos uma arvore de
decisdo em cada parte, os resultados obtidos podem ser bastante diferentes. Por outro lado,
procedimentos com baixa varidncia produzem resultados semelhantes quando aplicados repeti-
damente a diferentes conjuntos de dados. A regressdo linear, por exemplo, tende a apresentar
baixa variancia, especialmente quando a razado entre 1 e p é moderadamente grande.

Bootstrap aggregation, ou bagging, é um procedimento geral para reduzir a varidncia de um
método de aprendizado estatistico. Essa técnica é particularmente ttil no contexto de drvores de
decisao.

Lembre que, para um conjunto de n observagdes independentes Zj, ..., Z,, cada uma com
variancia ¢?, a varidncia da média Z das observacdes é dada por ¢2/n. Ou seja, a média de
vérias observagdes reduz a variancia.

Inspirado por esse principio, uma maneira natural de reduzir a varidncia e aumentar a acu-
récia de teste é gerar muitos subconjuntos de treinamento, ajustar um modelo preditivo em cada
um e entdo calcular a média das previsoes. Se denotarmos as previsdes como f!(x), f2(x),..., f5(x),
a previsdo agregada é:

> ().

b=1

S|

favg<x) =
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Na prética, ndo temos acesso a multiplos conjuntos de treinamento independentes. Em vez
disso, usamos o bootstrap, gerando B conjuntos de treinamento bootstrap amostrados com reposi-
¢do do conjunto original. Ajustamos o modelo em cada conjunto para obter f**(x) e, finalmente,
calculamos a média:

f(x).

S|
Mm

fbag(x) =

b=1

Esse procedimento é chamado de bagging.

Ao aplicar o bagging em arvores de regressao, construimos B arvores em conjuntos de treina-
mento bootstrap e combinamos as previsdes. Essas arvores sdo crescidas profundamente e nido
sdo podadas. Portanto, cada arvore individual tem alta varidncia e baixo viés. Ao combinar as
arvores, a variancia é reduzida substancialmente, enquanto o viés permanece baixo. Assim:

O bagging reduz a varidncia sem aumentar significativamente o viés.

Para problemas de classificagdo, a extensdo é direta. Para cada observacdo de teste, registra-
mos a classe predita por cada uma das B 4rvores e usamos o voto majoritario para determinar a

classe final.

Além da intuicdo bdsica, podemos obter uma férmula explicita para a varidncia da predi-

2

cdo agregada. Suponha que cada 4rvore f’(x) tenha variancia ¢?, e que a correlagio entre as

predicoes de duas drvores quaisquer seja p. Entdo, a variancia da média das &rvores é:

Var (fbag(x)) = po? + (1_;)02.

Para valores grandes de B, o segundo termo se aproxima de zero e a varidncia total se reduz a

po?.

Isso mostra que o bagging reduz a variancia, mas a redugdo depende da correlacio p entre as
arvores. Quanto menor a correlagdo, maior serd a redugdo de variancia ao aplicar o bagging.

Essa ideia ndo é restrita a arvores de decisdo. Em principio, qualquer modelo com alta
variancia pode se beneficiar do bagging. No entanto, drvores de decisdo sdo especialmente
adequadas porque tém baixo viés e alta varidncia, caracteristicas que tornam possivel reduzir a
variancia sem sacrificar a acurdcia. Além disso, no contexto de florestas aleatérias e bagging de
arvores, costuma-se crescer as drvores até a pureza maxima dos nés. Isso aumenta ainda mais
a variancia individual das &rvores e, consequentemente, o potencial de redugdo de variancia ao

aplicar o bagging.

6.2.1 Estimativa do Erro Out-of-Bag (OOB)

Existe uma maneira bastante simples de estimar o erro de teste de um modelo bagged, sem preci-
sar realizar validacdo cruzada ou utilizar um conjunto de validagdo separado. O ponto chave do
bagging é que cada arvore é ajustada usando subconjuntos bootstrap das observagoes originais.
Em média, cada arvore usa aproximadamente dois ter¢os das observagdes para treinamento. O
restante, cerca de um ter¢o, ndo é utilizado naquela arvore especifica e essas observagdes sdo
chamadas de out-of-bag (OOB).
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Essa propor¢do de aproximadamente um terco pode ser calculada da seguinte forma. Cada
arvore do bagging é ajustada com um conjunto bootstrap, onde n observagdes sdo amostradas
com reposicdo a partir das n observagdes originais. Para uma observacado especifica i, a probabi-
lidade de ela ndo ser escolhida em uma tinica amostragem é

Como n amostras sdo feitas para formar o conjunto bootstrap, a probabilidade de que i nunca
seja selecionada é

Portanto, cerca de 36,8% das observagdes ndo sdo usadas no ajuste de uma &arvore especifica e
ficam como OOB para essa arvore.

Para estimar o erro OOB, consideramos a predicdo para a i-ésima observacdo utilizando ape-
nas as arvores nas quais essa observagao foi OOB, ou seja, ndo foi usada no treinamento daquela
arvore. Em média, cada observagdo sera OOB para aproximadamente 0,368 x B arvores, onde B
¢ o namero total de drvores do ensemble. Para cada observagdo, podemos entdo calcular a pre-
dicdo média (no caso de regressdo) ou aplicar uma votagdo majoritdria (no caso de classificagdo),

usando apenas essas arvores.

Esse processo leva a uma predi¢do OOB tnica para cada observagdo. Repetindo para todas
as n observagdes do conjunto de dados, podemos calcular o erro quadréatico médio OOB (para
regressdo) ou a taxa de erro OOB (para classificagdo).

O erro OOB fornece uma estimativa valida do erro de teste do modelo bagged, pois as pre-
dicdes sao feitas apenas com drvores que ndo usaram a observagdo correspondente em seu trei-
namento. Quando B é suficientemente grande, o erro OOB torna-se praticamente equivalente ao
erro estimado por validagdo cruzada leave-one-out. Isso torna o OOB uma alternativa conveniente
e computacionalmente eficiente para estimar o erro de teste, especialmente em grandes conjuntos

de dados onde a validagdo cruzada seria onerosa.
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Algorithm 2 Célculo do erro Out-of-Bag (OOB)
1: Dado um conjunto de treinamento com 7 observac¢des e um ntimero de arvores B
: forb =1 até B do

2
3 Sorteie um conjunto bootstrap com n observagdes (com reposicdo)
4: Ajuste uma arvore f *b usando o conjunto bootstrap
5 Registre quais observagdes ndo foram usadas na drvore b (estas serdo OOB para a drvore
b)
end for
for cada observacdao i = 1 até n do
Identifique todas as drvores onde i foi OOB

o * N

if ha pelo menos uma arvore OOB para i then

10: Preveja #1998 usando as 4rvores onde i foi OOB
11: end if

12: end for

13: Compare 7998 com y; verdadeiro e calcule o erro médio

6.2.2 Importancia de Varidveis em Modelos Bagged

Como discutido anteriormente, o uso do bagging normalmente resulta em melhoria na acuracia
de predi¢do quando comparado ao uso de uma unica drvore. No entanto, essa melhoria ge-
ralmente ocorre as custas da interpretabilidade do modelo. Uma das vantagens fundamentais
das arvores de decisdo ¢é sua facil visualizagdo e a possibilidade de identificar diretamente quais
varidveis sdo mais importantes. Quando combinamos muitas drvores — como no bagging —
torna-se impraticavel representar visualmente o modelo final ou identificar facilmente as varia-
veis mais relevantes.

Apesar dessa limitagado, é possivel obter uma medida global da importancia das varidveis em
ensembles. Para drvores de regressdo, calcula-se a redugdo total no RSS (soma dos quadrados
dos residuos) atribuida a divisdes feitas por cada varidvel, somando essa quantidade sobre todas
as B arvores do ensemble. No caso de arvores de classificagdo, soma-se a reducdo no indice de
Gini associada a cortes que usam cada varidvel. Varidveis que resultam em maiores redugdes

acumuladas sdo consideradas mais importantes no processo de deciséo.

6.3 Random Forests

As random forests representam uma extensdo do bagging que busca reduzir a correlagdo entre as
arvores, um problema que ocorre naturalmente quando todas as arvores podem escolher livre-
mente entre todas as varidveis disponiveis. No bagging puro, as drvores tendem a usar repetida-
mente as varidveis mais fortes, levando a drvores altamente correlacionadas e, consequentemente,
limitando a redugdo de varidncia do ensemble. Para mitigar esse problema, as random forests
introduzem uma modificagdo simples, porém eficaz: a cada divisdo de uma arvore, um sub-
conjunto aleatério de m varidveis é selecionado entre as p varidveis disponiveis, e apenas essas

podem ser usadas no corte.
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Essa estratégia forca diferentes arvores a considerar diferentes varidveis em suas divisdes
iniciais, promovendo diversidade entre as arvores e reduzindo a correlagdo entre elas. Normal-
mente, o nimero de varidveis candidatas m é escolhido como m =~ VP embora outros valores
possam ser usados dependendo do problema.

A principal diferenga entre bagging e random forests reside justamente nessa escolha do
tamanho do subconjunto de varidveis em cada divisdo. Quando m = p, a random forest se
reduz ao bagging. Para valores menores de m, as drvores sdo forcadas a explorar combinagdes
diferentes de variadveis, o que aumenta a diversidade do ensemble e reduz a varidncia da predicao
final. Contudo, se m for muito pequeno, isso pode levar a um aumento do viés, ja que as arvores

podem deixar de considerar varidveis relevantes em divisdes cruciais.

6.3.1 Impacto dos Parametros B e m

O ndmero de 4rvores B no ensemble controla a quantidade de modelos combinados. Aumentar B
tende a reduzir a varidncia da predicdo final, sem aumentar o viés. Ja o pardmetro m, que deter-
mina o nimero de varidveis candidatas em cada divisdo, regula a decorrelagdo entre as arvores.
Valores menores de m incentivam uma maior diversidade entre as arvores, promovendo reducao
da variancia, especialmente em conjuntos de dados com varidveis altamente correlacionadas. No

entanto, uma escolha de m muito pequena pode elevar o viés do modelo.
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6.3.2 Uso de Random Forests em Altas Dimensdes

O uso de random forests é especialmente benéfico em situagdes de alta dimensionalidade, isto
é, quando o namero de preditores p é grande em relacdo ao nimero de observagdes n. Nesses
cendrios, é comum que muitas varidveis sejam irrelevantes ou altamente correlacionadas. A
estratégia de selecdo aleatéria de varidveis em cada divisdo ajuda a evitar que todas as &rvores
concentrem suas divisdes nas mesmas variaveis dominantes, forcando o modelo a considerar
uma gama mais ampla de preditores. Isso aumenta a diversidade entre as arvores e melhora a
capacidade de generalizacdo do ensemble.

Além disso, random forests lidam bem com problemas onde p > n, como em dados gend-
micos, imagens ou texto, e conseguem tolerar a presenca de muitas varidveis ruidosas ou nao
informativas. Outra vantagem pratica é que o método geralmente ndo requer uma etapa prévia
de selecdo de variaveis, pois o processo de amostragem aleatdria e a propria métrica de impor-
tancia de varidveis ajudam a mitigar o impacto de preditores irrelevantes.

Exercicio 13. Entender os codigos aqui.


https://github.com/thiagorr162/curso_aprendizado/tree/main/notebooks/arvores
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Capitulo 7

Sele¢ao de modelos lineares e
regularizacao

No contexto de regressdo, o modelo linear padrao é dado por:
Y:/S0+/31X1+---+,B,,Xp+e,

onde Y é a varidvel resposta, Xj, ..., X, sdo as varidveis preditoras, e € representa o erro aleatério.
Esse modelo é normalmente ajustado via minimos quadrados. Apesar de sua simplicidade,
o modelo linear apresenta vantagens importantes, especialmente em termos de inferéncia e in-
terpretabilidade. Em muitos problemas reais, ele é surpreendentemente competitivo mesmo
quando comparado a modelos ndo-lineares mais complexos.
Existem dois principais motivos para substituir o ajuste por minimos quadrados por outros

procedimentos:

* Performance Preditiva. Quando a relagdo entre resposta e preditores é aproximadamente
linear, o ajuste por minimos quadrados resulta em estimadores com viés baixo. Se o niimero
de observagoes n for muito maior do que o ntimero de varidveis p, ou seja, n > p, os esti-
madores também apresentam baixa varidncia, o que tende a resultar em boa performance
em dados de teste.

Entretanto, se n ndo for muito maior do que p, a variancia dos coeficientes aumenta sig-
nificativamente, levando a overfitting e ma generalizacdo. No caso em que p > n, ndo
existe solugdo tinica para os coeficientes que minimizam os erros quadréaticos: hé infinitas

solugdes possiveis.

Cada uma dessas solugdes resulta em erro zero nos dados de treino, mas em geral apre-
sentam alto erro nos dados de teste devido a alta variancia. Ao restringir ou encolher os
coeficientes estimados, conseguimos reduzir substancialmente a varidncia, com aumento
de viés geralmente desprezivel — o que melhora a performance preditiva em dados ndo

vistos.

¢ Interpretabilidade do Modelo. E comum que, em uma regressdo com mdultiplos predito-
res, algumas varidveis ndo estejam realmente associadas a resposta. Incluir essas varidveis

irrelevantes aumenta a complexidade do modelo e dificulta sua interpretacao.
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Ao remover essas varidveis — por exemplo, forcando os coeficientes correspondentes a
serem zero — obtemos um modelo mais simples e facil de interpretar. Note que o

Existem muitas alternativas, cldssicas e modernas, ao uso de minimos quadrados para ajustar
o modelo linear. Neste capitulo, sdo discutidas duas alternativas:

* Selecao de Subconjuntos (Subset Selection): envolve identificar um subconjunto das p
varidveis que acreditamos estarem associadas a resposta. Ajusta-se o modelo linear por

minimos quadrados usando apenas essas varidveis selecionadas.

¢ Encolhimento (Shrinkage): ajusta-se um modelo utilizando todas as p varidveis, mas os
coeficientes sdo encolhidos em direcao a zero. Esse encolhimento, também chamado de
regularizagdo, reduz a variancia do modelo. Em alguns casos, os coeficientes podem até ser
forcados a zero, o que permite realizar selecdo de varidveis implicitamente.

7.1 Selecao do melhor subconjunto (Best Subset Selection)

A selecdo do melhor subconjunto consiste em ajustar modelos de regressdo para todas as com-
binag¢des possiveis de subconjuntos das p varidveis preditoras. Por exemplo, ajustamos todos os
modelos com uma varidvel, depois com duas, e assim por diante até o modelo com todas as p
varidveis. Para cada tamanho de subconjunto k, comparamos todos os modelos de tamanho k
e selecionamos aquele com melhor desempenho nos dados de treinamento, geralmente o que
possui menor erro residual quadrético (RSS). Em seguida, entre os modelos de tamanhos dife-
rentes, escolhemos aquele que apresenta melhor desempenho preditivo, avaliando-o em dados
de validagdo ou usando critérios como C,, AIC, BIC ou R? ajustado. O procedimento pode ser
descrito da seguinte forma:

Algorithm 3 Best Subset Selection
1: Defina M como o modelo nulo, sem preditores, que prediz a média da amostra.

2: fork=1,2,...,pdo
3: Ajuste todos os (}) modelos com exatamente k preditores.

4: Escolha o melhor modelo M dentre esses, com base no menor Erro Quadratico ou maior
RZ
end for

G

6: Escolha o melhor modelo dentre My, M;, ..., M, com base em:
* erro em um conjunto de validagéo;

¢ ou validagédo cruzada.

Uma dificuldade importante desse método estd no fato de que RSS e R? tendem a melhorar
conforme adicionamos mais varidveis, o que favorece modelos mais complexos e com maior
risco de sobreajuste. Por isso, é essencial usar critérios que penalizam a complexidade ou avaliar
diretamente o erro de teste, via valida¢do cruzada ou conjunto de validagdo separado.

Apesar de sua simplicidade conceitual, a sele¢do do melhor subconjunto enfrenta sérias li-
mitacdes computacionais. O ntiimero de modelos possiveis cresce exponencialmente com p, ja
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que existem 27 subconjuntos. Por exemplo, com p = 10, hd cerca de mil modelos possiveis;
com p = 20, mais de um milhdo; e com p = 40, torna-se praticamente invidvel testar todas as

possibilidades, mesmo com computadores modernos.

Vale destacar que o procedimento pode ser estendido para modelos ndo paramétricos. A
selecdo dos modelos pode ser guiada por medidas como o erro de validagdo ou crité-
rios baseados em perda preditiva empirica, calculados em conjuntos de validagdo ou via
validagdo cruzada. O desempenho de cada subconjunto de varidveis pode ser avaliado
com base na capacidade preditiva do modelo ajustado de forma nao paramétrica, como

estimadores por k-vizinhos mais préximos, arvores de decisdo, ou métodos kernel.

7.1.1 Selecao Foward e Backward

Por razdes computacionais, a sele¢do do melhor subconjunto torna-se invidvel para valores gran-
des de p. Além disso, um espaco de busca muito amplo pode levar a selecio de modelos com
6timo desempenho nos dados de treino, mas que ndo generalizam bem. Isso ocorre porque,
quanto mais modelos avaliamos, maior a chance de encontrar um que se ajusta bem ao acaso.
Assim, métodos que restringem o espaco de busca, como a selegio stepwise, oferecem uma alter-
nativa pratica e eficiente.

A selecao stepwise explora um nimero bem menor de modelos do que a busca exaustiva.
Um exemplo comum é a selecdo stepwise para frente (forward stepwise selection). Nesse
procedimento, comecamos com o modelo nulo, que ndo contém nenhuma varidvel preditora.
Em cada etapa, adicionamos a equagdo a varidvel que proporciona a maior melhora no ajuste,
medida por critérios como R? ou RSS. Esse processo se repete até que todas as varidveis estejam
no modelo, ou até um critério de parada ser atingido.

A seguir, descrevemos formalmente o procedimento:

Algorithm 4 Forward Stepwise Selection

1: Comece com o modelo nulo My

2: fork=0,1,...,p—1do

3 Considere os p — k modelos que adicionam uma nova varidvel ao modelo M;

4: Escolha o0 modelo M1 que oferece a maior melhoria no ajuste (menor RSS ou maior R?)
5: end for

6: Ao final, escolha o melhor modelo entre M, ..., M, com base em erro de validagdo, AIC,

BIC, R? ajustado ou validagdo cruzada

Comparado a selecdo exaustiva, que requer ajustar 2 modelos, a selecdo forward requer bem
menos ajustes. Especificamente, no passo k, consideramos p — k modelos, resultando em um total
de:

-1

1+pZ(p—k):1+p(pz+1>
k=0
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modelos avaliados. Por exemplo, com p = 20, a selecdo exaustiva requer mais de um milhdo
de ajustes, enquanto a stepwise requer apenas 211.

Apesar da grande vantagem computacional, a selecdo stepwise ndo garante encontrar o me-
lhor modelo possivel. Isso ocorre porque decisdes tomadas em etapas anteriores afetam as opcdes
disponiveis nas préximas. Por exemplo, suponha que o melhor modelo com uma varidvel inclua
X1, mas o melhor modelo com duas varidveis inclua X; e X3. Como o método ja adicionou Xj na
primeira etapa, o modelo com duas varidveis sera forcado a incluir X;, podendo assim descartar
a melhor combinacdo possivel de duas variaveis. Portanto, o método pode falhar em encontrar o
melhor subconjunto global de variaveis.

Ainda assim, na pratica, a selecdo stepwise costuma apresentar bom desempenho e é uma al-

ternativa 1til quando o ntmero de varidveis é grande demais para permitir uma busca exaustiva.

Assim como a selegdo stepwise para frente, a selegio stepwise para trds (backward stepwise se-
lection) é uma alternativa eficiente a sele¢do do melhor subconjunto. No entanto, ao contrario
do método forward, que comega com nenhum preditor e adiciona varidveis uma a uma, o mé-
todo backward comeca com o modelo completo (contendo todas as p varidveis) e vai removendo
iterativamente as varidveis menos tteis, uma por vez.

A cada etapa, entre todos os modelos que removem uma varidvel do modelo atual, escolhe-se
aquele com melhor ajuste — tipicamente o de menor erro residual quadrético (RSS) ou maior
R?%. O processo continua até restar apenas o modelo nulo, que ndo inclui nenhum preditor. O
algoritmo é descrito a seguir:

Algorithm 5 Backward Stepwise Selection

1: Defina M, como o modelo completo, contendo todos os p preditores
2: fork=p,p—1,...,1do
3: Considere os k modelos que removem uma das varidveis de My, resultando em modelos

com k — 1 variaveis

s

Escolha o melhor entre esses modelos e denote-o por Mj_
end for

Si

6: Escolha o melhor modelo final entre M, ..., M}, com base em erro de validagao, AIC, BIC,
R? ajustado ou validagio cruzada

Assim como o método forward, a selegdo backward avalia um ntimero total de modelos igual
al+ MPTH), 0 que é muito menor que os 2” modelos da selecdo exaustiva. Isso permite aplicar
o método backward mesmo quando p é grande demais para a busca completa.

Uma limitagdo importante, porém, é que a selecdo backward s6 pode ser usada quando o
nimero de observagdes n é maior do que o niimero de varidveis p, pois 0 modelo inicial completo
precisa ser ajustavel. Ja o método forward pode ser aplicado mesmo quando p > n, sendo 1til
em contextos de alta dimensionalidade.

E importante lembrar que, assim como o forward, o backward também nao garante encontrar
o melhor subconjunto global de varidveis. O caminho de remogdes escolhidas influencia o resul-
tado final, e 0 método pode ignorar subconjuntos que oferecem ajuste superior por ndo estarem
em sua trajetéria de busca.
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Exemplo: Selecao de Variaveis com Modelos Nao Paramétricos no Python

A seguir, mostramos como aplicar a selegdo sequencial de varidveis usando um classificador
ndo paramétrico, o k-Nearest Neighbors (kNN), com o dataset cldssico iris. Usamos a classe
SequentialFeatureSelector da biblioteca scikit-learn:
from sklearn.feature_selection import SequentialFeatureSelector
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris

Primeiro, carregamos os dados:

X, y = load_iris(return_X_y=True)

Aqui, X representa as varidveis preditoras e y representa a varidvel de resposta (as espécies
das flores). Em seguida, definimos o estimador k-NN com 3 vizinhos:

knn = KNeighborsClassifier (n_neighbors=3)

Criamos o seletor sequencial, especificando que queremos selecionar 3 varidveis:
sfs = SequentialFeatureSelector(knn, n_features_to_select=3)

Ajustamos o seletor aos dados:
sfs.fit(X, y)

Ap6s o ajuste, podemos verificar quais varidveis foram selecionadas com:

sfs.get_support ()

# Saida: array([ True, False, True, Truel)

A saida indica que as colunas 0, 2 e 3 foram selecionadas (valores True), enquanto a coluna
1 foi descartada. Podemos transformar o conjunto original X para conter apenas as colunas

selecionadas:

sfs.transform(X) .shape
# Saida: (150, 3)

O novo conjunto de dados contém 150 amostras e apenas 3 variaveis, conforme especificado.
Este exemplo mostra como técnicas de selegdo de varidveis podem ser usadas com modelos nado
paramétricos de forma pratica e eficiente, utilizando validagdo interna para guiar a escolha das
melhores combinagdes de preditores.
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Comparacao de Modelos com Selecao de Varidveis em Pipeline

A seguir, descrevemos um procedimento completo para comparar trés modelos de classificagdo
— Regressdo Logistica, k-Nearest Neighbors (kNN) e Floresta Aleatéria — utilizando uma etapa
de selecdo de varidveis incorporada ao pipeline. A comparacao é feita com base no desempenho
de validagdo, e o melhor modelo é entdo avaliado no conjunto de teste.

1. Importacao das bibliotecas e carregamento dos dados.
Utilizamos o conjunto de dados iris, que ja esta disponivel no scikit-learn, e dividimos

em trés partes: treino, validagéo e teste.

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.pipeline import Pipeline

from sklearn.feature_selection import SequentialFeatureSelector
from sklearn.linear_model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

import numpy as np
X, y = load_iris(return_X_y=True)

# 60% treino, 20% validagdo, 20% teste
X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random

2. Definicao dos modelos a serem comparados.
Criamos um diciondrio com os trés classificadores que desejamos comparar. Eles serdo

usados dentro dos pipelines com selegdo de varidveis.

models = {
"Regressdo Logistica": LogisticRegression(max_iter=1000),
"kKNN": KNeighborsClassifier(n_neighbors=3),

"Floresta Aleatéria": RandomForestClassifier (random_state=0)

3. Criacdo dos pipelines com selecao sequencial de varidveis.
Para cada modelo, criamos um Pipeline que inclui primeiro a sele¢do de 3 varidveis com

SequentialFeatureSelector, e depois o classificador.
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pipelines = {
name: Pipeline([
(’select’, SequentialFeatureSelector(model, n_features_to_select=3)),
(’clf’, model)
D

for name, model in models.items()

4. Treinamento e avaliacdo de cada pipeline no conjunto de validacao.
Cada pipeline é ajustado usando apenas os dados de treino. Em seguida, fazemos predicoes

no conjunto de validagdo e calculamos a acurécia.

for name, pipe in pipelines.items():
pipe.fit(X_train, y_train)
y_pred = pipe.predict(X_val)
acc = accuracy_score(y_val, y_pred)

print (f"{name}: Acurdcia na validagdo = {acc:.3f}")

5. Escolha do melhor modelo e avalia¢do no conjunto de teste.
Ap6s identificar o modelo com melhor desempenho na validagdo, reagrupamos os dados
de treino e validagdo para refazer o ajuste final. Em seguida, avaliamos o desempenho final
no conjunto de teste.

# Exemplo: suponha que a Regressdo Logistica teve melhor desempenho

best_pipe = pipelines["Regressdo Logistica"]

# Avaliamos no teste
y_test_pred = best_pipe.predict(X_test)

print ("Acurédcia final no teste:", accuracy_score(y_test, y_test_pred))

Esse processo garante uma comparacao justa entre modelos, pois a selecdo de varidveis é feita
internamente em cada pipeline, evitando o uso indevido de dados de validacdao. Além disso, ao
separar os conjuntos de dados, conseguimos avaliar corretamente a capacidade de generalizagdo
dos modelos.
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7.2 Ridge e Lasso

7.2.1 Regressio Ridge (Ridge Regression)

A regressdo ridge é uma técnica de regularizacdo que busca ajustar todos os p preditores, mas
penalizando coeficientes grandes, o que ajuda a reduzir a varidncia do modelo.
Lembre que, na regressio linear comum, os coeficientes B = (B, ..., ) sdo obtidos minimi-

zando a soma dos erros quadréticos (RSS):

n p 2
RSS = E (yl - ‘30 — 21 ,B]-xz-]-) .
=

i=1

Na regressdo ridge, em vez disso, minimizamos a seguinte funcao de custo:

i=1

p 2 p
). <}/i —Bo— Z%ﬁj%’j) +A Z%ﬁ]z,
= =

onde A > 0 é o pardmetro de regularizacdo, que controla a for¢a da penalizacdo. O segundo
termo, chamado penalidade de encolhimento (shrinkage penalty), impde uma penalizagdo a coeficien-
tes grandes e forga os valores de §; a se aproximarem de zero.

Em notagdo matricial, assumindo que os dados foram centrados (isto é, sem intercepto By), a

fungdo a ser minimizada pode ser escrita como:

~Ridge

B =argrr}gin{l\Y—XﬁH%+/\Hl3||§}f
onde:

* X € R"*? é a matriz de design;

* Y € R" é o vetor resposta;

* S € IR? é o vetor de coeficientes;

* || - |l2 denota a norma Euclidiana (ou ¢»-norma).

Essa formulagdo mostra claramente que o objetivo é encontrar um vetor de coeficientes que,
além de se ajustar bem aos dados (minimizando o erro), tenha norma pequena, evitando coefici-
entes muito grandes.

O parametro A precisa ser ajustado separadamente, geralmente via validagao cruzada. Quando
A = 0, obtemos o modelo de minimos quadrados ordindrios (OLS). A medida que A — oo, todos
os coeficientes tendem a zero.

A solugao do problema de Ridge é dada minimizando:

J(B) = Y — XBII* + AlIBII”

Derivando e igualando a zero:

Vi==2X"Y+2(X'X+ADB=0=B=(X"X+AI)"'XTY
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A matriz X' X + AI é sempre invertivel para A > 0, mesmo que X ' X seja singular. De fato,
seja A = X' X + AI, com A > 0. Queremos mostrar que A é invertivel e para isso, vamos mostrar
que A é definida positiva.

Para todo v # 0:

v'Av =0 X Xv+Av'v = || Xv|* + Alv|?

Como A >0 e |[v]|?> > 0, entdo v Av > 0. Logo, A é definida positiva e, portanto, invertivel.

7.2.2 Regressao Lasso

A regressao Lasso (Least Absolute Shrinkage and Selection Operator) é uma alternativa a regressao

ridge que realiza regularizagdo com norma ¢;. Ela busca minimizar:

~Lasso P

B =argngn{HY—XﬁHz+AHI3H1}I onde ||l = }_ [B)]

j=1

Comparando com ridge, a diferenca é que a penalizagdo com norma ¢, (quadrado dos coefi-
cientes) foi substituida pela norma ¢;. Essa troca faz com que o Lasso produza solugdes esparsas
— ou seja, com muitos coeficientes exatamente iguais a zero — promovendo assim sele¢do de

variaveis automaticamente.

Ao contrério do ridge, o Lasso ndo possui solugdo fechada. Isso ocorre porque a fungdo de
custo ndo ¢é diferenciavel em pontos onde ; = 0 (devido ao valor absoluto). Portanto, a solugéo

é obtida por métodos numéricos como:

¢ Coordinate descent (descida por coordenadas): método iterativo que otimiza um coefici-

ente por vez, mantendo os outros fixos.

* Least Angle Regression (LARS): técnica eficiente que gera o caminho completo de solugdes

a medida que A varia.

Enquanto ridge encolhe todos os coeficientes, mas ndo os zera, o Lasso forga alguns co-
eficientes a serem exatamente zero quando A é suficientemente grande. Isso facilita a
interpretagdo dos modelos, além de funcionar como um mecanismo de selecdo de varia-

veis.

7.2.3 Formulacdes Alternativas de Ridge e Lasso

As formulagdes de Ridge e Lasso com penalizagdo A também podem ser escritas como problemas
com restrigdes equivalentes. No caso do Lasso, podemos reescrevé-lo como:

p
mﬁinHY—XﬁH2 sujeitoa ) _ [Bj| <,
j=1

e, no caso do Ridge,
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p
mﬁin Y — XB||* sujeito a Z,B? <s.

j=1

Para cada valor de A > 0, existe um valor de s > 0 tal que as solugdes das versdes penalizadas
e das versdes com restri¢do sdo equivalentes.

Essas formas ajudam a entender o comportamento geométrico das solugdes. No caso em que
p = 2, a restri¢do do Lasso define um losango (por ser uma bola da norma ¢;), enquanto a do
Ridge define um circulo (bola da norma ¢;). Como os cantos do losango coincidem com os eixos
coordenados, é comum que a solugdo 6tima ocorra exatamente em um desses cantos — ou seja,
com algum f; = 0. Isso explica por que o Lasso promove esparsidade e realiza implicitamente
selecdo de varidveis. Ja a forma circular do Ridge penaliza todos os coeficientes de forma suave

e simétrica, o que leva a coeficientes pequenos, mas raramente nulos.

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint regions,
|B1|+ 82| < s and Bi + B3 < s, while the red ellipses are the contours of the RSS.

Essas formulagdes também nos permitem interpretar o Lasso como uma aproximacao convexa

ao problema de selecao de subconjunto. Esse problema pode ser formulado como:

p
min [|Y — XB||* sujeitoa Y I(B; #0) <s,
B i—1
]
onde I(-) é a fungdo indicadora. Essa abordagem procura o menor erro possivel utilizando
no méximo s varidveis, mas é um problema combinatério e computacionalmente invidvel para
grandes p. O Lasso substitui essa restrigdo discreta por uma relaxa¢do continua via a norma /1,
tornando o problema convexamente tratével e eficiente de resolver com métodos numéricos.

Para entender essa equivaléncia, vamos comegar com a formula¢do com restri¢do do Lasso:

min Y - XB| sujeito a Bl < s
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Formamos o Lagrangiano com multiplicador A > 0:

L(BA) =Y = XB*+ A (|l — )

Como s é constante, minimizar £ em relagdo a  equivale a minimizar:

min - [Y - XB|* + AllBlh

Ou seja, obtemos a formulacado penalizada do Lasso. O parametro A atua como multiplicador
de Lagrange: para cada valor de s, existe um A > 0 tal que ambas as formulagdes tém a mesma

solugdo 6tima.

7.2.4 Interpretacao via encolhimento

Para entender melhor o comportamento do Ridge e do Lasso, consideramos um caso simples:
n = p, a matriz de design X ¢é a identidade I, e ndo ha intercepto. Nesse cendrio, o problema de

minimos quadrados se torna:

cuja solugdo é simplesmente ,Bj =Y;.
Aplicando a penalizacdo do Ridge, o problema se torna:

p p
min Z(y]- — ,Bj)z + A Z ,3]2,
BisBp j=1 j=1

cuja solucdo analitica é:

BRidge _ Yj
] 14+A°

Ou seja, cada coeficiente é encolhido proporcionalmente em dire¢do a zero, pela mesma razdo.

Para o Lasso, temos:

p p
min ) (y;— B;)* +A ) B,
PrbBp i3 =1
cuja solucdo é dada por soft-thresholding:

yi—A/2 sey;>A/2
A]Lasso = Yyi+tA/2 sey; < —A/2
0 se |yj| < A/2
Dessa forma, enquanto o Ridge encolhe todos os coeficientes pela mesma proporcado, o Lasso
aplica uma reducdo constante A/2, podendo zerar coeficientes com valores absolutos pequenos.

Esse mecanismo explica por que o Lasso realiza sele¢do de varidveis automaticamente, enquanto

o Ridge nao zera coeficientes, apenas os diminui.
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matriz with 1°s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.

Embora o cendrio geral (com X ndo diagonal) seja mais complexo, a intuigdo permanece
véalida: o Ridge suaviza todos os coeficientes, enquanto o Lasso favorece solugdes esparsas.

Exercicio 14. Encontre o andlogo para o caso do best-subset selection.

7.2.5 Interpretacio Bayesiana de Ridge e Lasso

A regressdo Ridge e o Lasso podem ser vistos como estimativas de mdxima a posteriori (MAP) em

um modelo Bayesiano. Assumimos o modelo linear:
Y=XB+e, e~ N(0,0%),

onde a verossimilhanga é dada por:

FOV1XB) cerp (=50 Y = XBIE )

Perceba que quando ndo impomos nenhum prior sobre B, a estimativa de mdxima verossimi-
lhanca (MLE) é:
Buie = (X'X)7'XTY,

que coincide com a solugdo de minimos quadrados ordindrios.
Agora, se assumirmos um prior sobre os coeficientes B, obtemos:

p(B1Y,X) < f(Y[X,B)-p(B)

A solugdo MAP é entao:
Buap = argmaxlog f(Y | X, B) +log p(B).

Duas escolhas cldssicas para o prior levam as penalizacdes de Ridge e Lasso:
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* Ridge: prior Gaussiano ii.d., j ~ N (0,7?). Isso implica:

1
log p(B) —Z?HﬁH%/

e a solucdo MAP se torna:

2

p=argmin|[Y — XB|I* + A I3, comA=".

* Lasso: prior Laplace (double-exponential), i.i.d., ; ~ Laplace(0, b). Isso implica:

tog p(B) o — 3 Bl

e a solugdo MAP é:

2
B = argmin Y = XBI* + M|Bl, com A = =

—_—

]

00 01 02 03 04 05 08 07
]

00 01 02 03 04 05 08 07

FIGURE 6.11. Left: Ridge regression is the posterior mode for 3 under a Gaus-
sian prior. Right: The lasso is the posterior mode for 8 under a double-exponential
prior.

Ambos o0s casos assumem erros Gaussianos, mas impdem diferentes estruturas a priori sobre
o0s coeficientes:

¢ O prior Gaussiano (Ridge) é suave e disperso: tende a produzir coeficientes pequenos, mas
raramente exatamente zero.

¢ O prior Laplace (Lasso) é pontudo no zero: concentra mais densidade ao redor do zero,
promovendo esparsidade.

Assim, Ridge e Lasso sdo interpretagdes MAP sob diferentes priors, enquanto minimos qua-
drados (ou MLE) assume apenas a verossimilhanga sem prior.
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Capitulo 8

Boosting

Em muitos problemas de aprendizado, pode ser dificil construir diretamente um modelo muito
preciso. Por outro lado, é mais factivel encontrar modelos simples que sejam capazes de er-
rar menos do que um chute aleatério. Esse tipo de modelo é conhecido como weak learner ou

aprendiz fraco.

Definicdo 1 (Aprendiz fraco). Uma classe de problemas é dita ser aprendivel por um weak learner se
existe um algoritmo que, dado qualquer distribuigdo dos dados, consegue produzir uma hipétese com erro
menor que 50% — ou seja, acerta um pouco mais do que o acaso.

Mais formalmente, existe algum v > 0 tal que, para qualquer distribuicdo dos dados e qualquer
problema da classe, a hipdtese h gerada satisfaz

1
IP(R(h) < 2—7) >1-9¢
para qualquer nivel de confianga 6 > 0 e com um niimero de amostras suficientemente grande.

Aqui, R(h) representa o erro da hipétese h. A condigdo significa que, com alta probabilidade,
o erro do modelo é estritamente menor do que 50% por uma margem .

Os modelos gerados por um aprendiz fraco sdo chamados de classificadores base (base classifi-
ers). A ideia central por trds do boosting é pegar esses classificadores fracos e combind-los para
formar um modelo forte, ou seja, um modelo que tenha alta precisdo.

O boosting faz isso utilizando métodos de comité: ele combina varias hipodteses fracas para
construir um preditor mais preciso. Na pratica, o boosting escolhe quais classificadores usar
e como combind-los, atribuindo pesos maiores aos modelos que erram menos e focando nas
amostras onde os modelos anteriores erraram. Um dos algoritmos de boosting mais conhecidos
é 0 AdaBoost.

8.1 AdaBoost

Denotamos por ‘H o conjunto de classificadores base, também chamado de conjunto de hipéteses,
a partir do qual o algoritmo seleciona os modelos. Cada classificador é uma fungdo que recebe
uma entrada x e retorna um rétulo em {—1,+1}, ou seja, H C {—1,+1}*.

79
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decision
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O AdaBoost funciona mantendo uma distribui¢do de pesos sobre os exemplos do conjunto de
treino. Inicialmente, essa distribuigdo é uniforme, ou seja, cada exemplo tem peso igual a 1/m.
A cada iteragdo, o algoritmo escolhe um classificador h; € H que minimiza o erro ponderado
segundo a distribuicdo atual D;:

m
hy = argmin l; Di(i) - L)y,

i

onde 1;(,,)»,, vale 1 se o classificador erra o exemplo i e 0 caso contrario.

O erro do classificador h; na distribui¢ao D; é dado por

m
e =) Di(i) - Tpyx) 2y,
i=1

e 0 peso associado a esse classificador é calculado como

o —110 1-&
t_2 & Et

de forma que classificadores mais precisos (menor &) recebem maior peso.

Ap6s calcular a4, a distribuigdo dos pesos sobre os exemplos é atualizada, aumentando o peso
dos exemplos que foram classificados incorretamente:

Dy (i) = Dy (i) - exp (Zjoctyiht(xi))




8.1. ADABOOST 81

onde Z; é um fator de normalizacdo que garante que a soma dos pesos seja igual a 1.
Ao final de T iteragdes, o classificador final é uma combinagao linear dos classificadores base:

T
flx) =} el (x)
t=1
e a predicdo final é feita tomando o sinal dessa soma:

sign(f(x))

O procedimento completo do AdaBoost pode ser resumido no seguinte pseudocédigo:

Algorithm 6 AdaBoost
Require: Conjunto de treinamento S = {(x1,¥1),..., (Xm,ym)}, onde y; € {—1,+1}

Require: Ntumero de iteragdes T
1: Inicialize Dy (i) « % paratodoi=1,...,m
2: fort=1até T do
3: Escolha h; € ‘H que minimiza o erro ponderado:

m
= argmin ) Di() e 2y,

4: Calcule o erro: .
“ ‘Z%Dt(i) ' 1hf(xi)#yi
1=
5: Calcule o peso do classificador:
1 1-— Et
0=z log e
6: Calcule o fator de normalizagéo:
Zt =2 81‘(1 — Et)
7: fori =1 até m do
8: Atualize a distribuigdo:
D, (i) - —at:he (3
By = DU sayh)
9: end for
10: end for

11: Defina o classificador final:

T
flx) = ; athy(x)

12: return sign(f(x))

Esse processo permite que o AdaBoost combine sucessivamente vérios classificadores fracos,
dando mais foco aos exemplos dificeis, até construir um modelo final com desempenho muito

superior aos modelos individuais.
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8.1.1 Calculo do erro empirico

Uma propriedade fundamental do AdaBoost é que seu erro empirico no conjunto de treinamento
decai de forma exponencial a medida que o niimero de iteragdes T cresce. Esse resultado é uma
consequéncia direta da forma como o algoritmo atualiza os pesos e da escolha dos classificadores
base.

Seja f = Y.L ash; o classificador final, que é uma combinagio linear dos classificadores base.
O erro empirico desse classificador no conjunto de treinamento S é definido por

1 m
Rs(f) = 5 Llust=o

onde a funcdo indicadora vale 1 quando a predicdo estd incorreta, ou seja, quando o sinal de
f(x;) ndo coincide com y;.

Para obter uma cota superior para esse erro, usamos a desigualdade geral
lu<o < exp(—u)
valida para qualquer u € R. Aplicando essa desigualdade, temos que

efyif(xi)

™=

1 & 1
1= 1

Il
—_

Agora, usamos a identidade que relaciona a distribuigdo Dr1 com a fun¢do f. Sabemos que

D , e Yif(xi)
T+1(i) = T 7, HtT:1 Z
onde Z; é o fator de normalizagdo na iteragao ¢.
Reorganizando essa equacdo, obtemos
T

e Vif(xi) — 4. Drya(i) - HZt
t=1

Substituindo isso na expressdo para o erro empirico, temos

~

~

Rs(f) <

NgE

m - Dryq(i) - HZt

1
m; =1

Il
_

Cancelando o fator m,
m T
Rs(f) < (ZDT+1(i)> 112
i=1 t=1

Como Dr41 é uma distribui¢do, sua soma sobre todos os exemplos é igual a 1. Assim, obtemos

Portanto, o erro empirico é completamente controlado pelo produto dos fatores de normalizagdo
Z; ao longo das iteragdes.
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Vamos entdo calcular Z;. Por definicao,

Dividimos os exemplos em dois grupos: aqueles corretamente classificados (yih:(x;) = +1) e

aqueles incorretamente classificados (y;h¢(x;) = —1). Assim,
Zf = Z Dt(i)e_at + Z Dt(i)eat
i:yih,(xi):Jrl i:y,vhf(xi):fl

A soma das probabilidades dos exemplos corretamente classificados é (1 — ¢;), e dos incorreta-
mente classificados é ¢;. Portanto,

Zi = (1—¢r)e ™ + g™

Agora substituimos a defini¢do de a;, que é

Calculamos cada termo:

1—¢ &t
Zy = /e (1 —¢
t t( t)<\/€t1—€t \/Et]-_gt)

Observe que os termos no paréntese somam exatamente 1:

(1_€t)+€t:1

Zy =2¢/e(1 — &)

Agora calculamos o produto dos Z; ao longo de t =1 até T:

Portanto,

T

H = \/ (1—¢)

Fatorando o 2:
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Reescrevemos cada termo da raiz como

Jate = (i (3-¢)

X

2

Aplicamos entdo a desigualdade 1 — x < e~

i o) cen( 2 o))

que é vélida para qualquer ntiimero real.

Substituindo essa cota no produto, obtemos

T T 1 2
HZt <exp| -2 ( — £t>
t=1 t=1 2

Portanto, o erro empirico satisfaz

Rs(f) < exp <—2§1 (; _ €t>2>

Este resultado mostra que o erro empirico decai exponencialmente rapido a medida que T au-
menta, desde que cada classificador tenha erro ¢; ligeiramente inferior a 50%.

No caso em que todos os classificadores satisfazem &; < % — 7 para algum < > 0 constante,
entdo obtemos diretamente a cota

~

Rs(f) < exp(—29°T)

ou seja, o erro empirico decai exponencialmente em fun¢do do ntiimero de iteragdes T.

L) test error

/

I ,

I 1 L
10 100 1000
number of rounds - log(7T)

error

training error

\
0

8.1.2 Um pouco de teoria

Um fendmeno interessante observado na pratica com o AdaBoost é que, apesar do erro de trei-
namento frequentemente cair rapidamente até zero, o erro no conjunto de teste continua dimi-
nuindo por algum tempo mesmo apés o treinamento ja ndo apresentar mais erros. Esse com-

portamento é contraintuitivo do ponto de vista cldssico de sobreajuste, onde se espera que, ao
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atingir erro zero no treino, o0 modelo passe a superajustar os dados e o erro de teste comece a
aumentar. No entanto, no AdaBoost, 0 que se observa é que, ap6s alcangar erro zero no conjunto
de treino, o algoritmo continua ajustando as margens — ou seja, continua aumentando a confi-
anca nas predigdes, especialmente afastando os exemplos corretamente classificados da fronteira
de decisdo. Esse aumento das margens tem efeito direto na melhora da generalizacido, e por
isso o erro no teste continua decaindo por vérias iteragdes mesmo quando o erro no treino ja é
zero. Esse fendmeno estd intimamente relacionado ao fato de que o AdaBoost ndo apenas busca
classificar corretamente, mas também maximizar as margens dos exemplos.

Esse comportamento, que inicialmente parece surpreendente, pode ser explicado matemati-
camente por uma cota de generaliza¢do baseada em margens. Esse resultado mostra que o erro
verdadeiro de um classificador ndo depende apenas do erro no conjunto de treinamento, mas
também da distribuicdo das margens — isto €, de qudo "confiantes"sao as predicdes realizadas.
Especificamente, vale o seguinte:

Teorema 3 (Cota de generalizacdo via margem). Seja H um conjunto de fungdes de valores reais. Fixe
o > 0. Entdo, para qualquer 6 > 0, com probabilidade ao menos 1 — 6, vale que, para todo h € conv(H),

~ 2 log%
< = 990
R(h) < Rsrp(h) + pf)‘{m(H) + -
e também
-~ 2 log 2
< <
R(h) < Rgp(h) + pms(’H) +3 T

onde R(h) é o erro verdadeiro, ﬁslp(h) é o erro empirico considerando apenas os exemplos cuja margem é
menor que p, e Ry, (H) é a complexidade de Rademacher do conjunto H.

De forma intuitiva, esse resultado nos diz que a generalizagdo de modelos como AdaBoost nao
depende apenas do erro no conjunto de treinamento, mas também de como esse erro estd dis-
tribuido em termos de margem. O termo ﬁslp(h) mede quantos exemplos estdo préximos da
fronteira de decisdo — ou seja, com margem menor que p. Se quase todos os exemplos tém
margens grandes, esse termo é pequeno, mesmo que o erro zero tenha sido alcancado.

O segundo termo, que é proporcional a %%m(H), reflete a influéncia da complexidade do
modelo. Aqui, a complexidade de Rademacher mede o quanto o conjunto de classificadores H é
flexivel, ou seja, capaz de se ajustar a diferentes padrdes nos dados. Quanto maior H, maior essa
complexidade. No entanto, ela aparece dividida por p, o que significa que, quanto maior for a
margem, menor serd o efeito da complexidade no bound de generalizagao.

Por fim, o terceiro termo é puramente estatistico, decrescendo com 1/ Vm, e representa o
efeito do tamanho da amostra na confianga do bound.

No contexto do AdaBoost, esse teorema formaliza a intui¢do de que, apds alcangar erro zero
no treinamento, o algoritmo continua melhorando a generalizagdo ndo por reduzir mais o erro
empirico (que ja é zero), mas por aumentar as margens — isto é, tornando as classificacdes mais
confiantes, afastando os exemplos da fronteira de decisdo. Esse mecanismo explica por que,
empiricamente, o erro de teste muitas vezes continua caindo mesmo depois do erro de treino ter

sido completamente eliminado.
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8.2 Gradient Boosting

O Gradient Boosting é uma generalizacdo do AdaBoost desenvolvida no inicio dos anos 2000
como uma abordagem mais ampla e flexivel para o problema de boosting. Enquanto o AdaBoost
foi originalmente proposto para classificagdo bindria, o Gradient Boosting estende a ideia central
— ajustar modelos sucessivos para corrigir os erros dos anteriores — para qualquer fun¢do de
perda diferencidvel, permitindo seu uso tanto em regressdo quanto em classificagao.

Historicamente, a conexdo entre AdaBoost e otimizagdo foi primeiramente identificada por
Leo Breiman, que mostrou que o AdaBoost pode ser interpretado como um algoritmo de otimi-
zagdo que minimiza uma funcdo de perda exponencial. Essa observagdo levou Jerome Friedman,
em 2001, a formalizar o Gradient Boosting como um método geral de descida de gradiente no
espaco de func¢des. Esse framework permite entender boosting como uma sequéncia de passos
na dire¢do oposta ao gradiente da funcdo de risco, de maneira completamente analoga a descida
de gradiente tradicional no espago de vetores.

Antes de formalizarmos o Gradient Boosting, é ttil revisar a intui¢do da descida de gradiente
no contexto classico de otimizacao.
Seja F(#) uma fungéo de custo que depende de um vetor de pardmetros § € RY. Nosso
objetivo é resolver
mein F(0)

A intuicdo da descida de gradiente surge da aproximagdo de Taylor de primeira ordem da fungao
F ao redor de um ponto 6p:
F(6g + h) = F(6g) + VF(6) "k

Esse desenvolvimento nos diz que, para pequenos deslocamentos g, o valor da fungdo varia
aproximadamente de forma linear na direcdo de g. A direcdo do gradiente VF(6y) aponta na
direcdo de maior crescimento local de F. Portanto, se escolhermos

h = —11-VF(6o)
com 717 > 0 pequeno, teremos
F(6o +h) = F(60) — 11 - [ VF(60)]I?

ou seja, a fun¢do diminui, pois o termo subtraido é ndo-negativo.
Esse raciocinio leva a regra de atualizagdo da descida de gradiente:

0 =61 —n-VF(0;_1)

onde o parametro 7 controla o tamanho do passo.

Se a funcdo F for convexa e suave, a descida de gradiente converge para o minimo global,
desde que o learning rate seja escolhido de forma adequada. Na prética, mesmo em problemas
ndo convexos, esse método é extremamente utilizado e serve como base para muitos algoritmos
modernos de otimizacdo.

A ideia central do Gradient Boosting é aplicar o principio da descida de gradiente no espaco
de fungdes. Assim como no caso paramétrico nos movemos na direcdo oposta ao gradiente para
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reduzir uma funcdo de custo, aqui buscamos, a cada iteracdo, uma fun¢do que aponta na diregdo
que mais reduz o risco.

Sejam (X,Y) varidveis aleatorias conjuntas, com X € X e Y € R (ou {—1,+1} na classifi-
cagdo). Seja L(Y,z) uma fun¢do de perda que mede o custo de predizer z quando o verdadeiro
valor observado é Y. O objetivo é encontrar uma fungdo f : X — R que minimiza o risco

populacional
R(f) = E[L(Y, f(X))].
O procedimento comega com uma fungao inicial
fo=0

e realiza atualizagdes iterativas da forma

fi(x) = fra(x) +v-hu(x)

onde h; aproxima a diregdo de descida e v > 0 é o learning rate.
O gradiente funcional no ponto x é dado por

)

—L(Y

0z (Yz)

gt(x) =E ‘X:x .

z=f;1(x)
Na prética, como ndo conhecemos a distribuicdo dos dados, trabalhamos com uma amostra

{(xi,y;) }*_; e minimizamos o risco empirico

|-

R(f) = L(yi, f (xi))-

n
i—1

O gradiente funcional se torna simplesmente o gradiente da perda no ponto (x;,y;):
d
gi(xi) = 5-L(yi 2) -
z z=fr-1(xi)

O modelo h; é ajustado para aproximar os pseudo-residuos

rip = =& (xi)

sobre os dados {x;}, tipicamente via uma arvore de decisdo.
A atualizagdo segue

fi(x) = fra(x) +v-hi(x).
Exemplos de fung¢des de perda e seus gradientes:
* Perda quadratica (regressio):
L) = (-2 ~L=-2y-2)

Pseudo-residuo: (y — fi—1(x)).

Note que nesse caso, o primeiro residuo é » = y — 0 e portanto na primeira iteracdo do
método, tentamos aprender y dado x, como numa tarefa usual de aprendizado supervisio-

nado.
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gradiente no espaco de fungdes. Escolher a funcdo de perda define os pseudo-residuos e, conse-

quentemente, a dindmica do algoritmo, permitindo sua aplicacdo tanto em regressdo quanto em
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* Perda exponencial (classificagdo binaria, AdaBoost):

L(y,z) = exp(—yz), ye€{-1,+1}

9
5L = —yexp(~yz)

Atribui mais peso a exemplos mal classificados.
* Log-loss (classificacdo bindria, regressao logistica):

L(y,z) = log(1 +exp(—~2yz))
J . 2y

[ =—-—=
0z 1+ exp(2yz)
O pseudo-residuo se comporta como o erro na probabilidade predita.

* Perda absoluta (regressao robusta):

L(y,z) = |y —z|
Gradiente subdiferencial:
aL— -1 sey—z>0
dz +1 sey—z<0

Leva & mediana condicional em vez da média.

O Gradient Boosting €, portanto, um framework geral de otimiza¢do que aplica descida de

classificagao.

Algorithm 7 Gradient Boosting via Pseudo-Residuos

Require: Dados de treino {(x;, y;)}";

Require: Ntumero de iteragdes B

Require: Funcdo de perda L(y, z)

Require: Learning rate v > 0

Require: Espaco de fungdes H (ex.: drvores)

1:
2:
3:

b

N

Inicialize fp(x) =0
forb =1 até B do

Computar os pseudo-residuos:
0
Tip = — a*L(yi,Z)
z z=fy_1(x;)
Ajustar um modelo h;, € ‘H para aprender r;;, dado x;
Atualizar o modelo:
fo(x) = foo1(x) +v - hy(x)
end for

return Modelo final fp(x)




Capitulo 9

SVM

Este capitulo apresenta um dos algoritmos de classificagdo mais bem fundamentados teorica-
mente e também um dos mais eficazes na pratica: as Mdquinas de Vetores de Suporte (SVMs).
Comegaremos com a formulagdo do problema de classificagdo linear, depois trataremos do caso
em que os dados ndo sdo separaveis e, por fim, discutiremos a fundamentagdo teérica baseada
na nog¢ao de margem.

Considere um espago de entrada X C R?, com p > 1, e um espago de saida J = {—1, +1}.
Suponha que exista uma fungdo desconhecida f : X — ) que associa rétulos as observagoes.
Dado um conjunto de hipéteses H, que contém funcgdes que mapeiam X em ), o objetivo da
tarefa de classificacdo binaria é escolher uma hipétese i € H, também chamada de classificador
bindrio, de forma que seu erro de generalizacdo seja pequeno.

Disponibiliza-se uma amostra de treinamento S = {(x1,y1),..., (X, ¥n)} C (X x V)", com
yi = f(x;), onde os pares (x;,y;) sdo amostrados de forma i.i.d. a partir de uma distribui¢do
desconhecida D. O desempenho do classificador & é avaliado pelo erro de generalizacdo, definido
como

Ro (1) = Poplh(x) £ F(x)].

A escolha do conjunto de hipéteses ‘H é fundamental. Resultados anteriores, como o princi-
pio da navalha de Occam, sugerem que conjuntos com menor complexidade tendem a oferecer
melhores garantias de aprendizado, assumindo todas as demais condigdes iguais. Uma classe
de hipéteses naturalmente simples e bastante estudada é a dos classificadores lineares, também
conhecidos como hiperplanos. Essa classe pode ser definida como:

H = {x — sign((w,x) +b) : we RP, b € R}.

89
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O problema de aprendizado com essa classe recebe o nome de problema de classificagdo
linear. Geometricamente, a equagdo (w,x) +b = 0 define um hiperplano em R?, onde w é
um vetor normal ndo nulo ao hiperplano e b é um escalar. Um classificador da forma x
sign((w, x) + b) atribui o rétulo +1 a todos os pontos que estdo de um lado do hiperplano e o
rétulo —1 aos pontos que estdo do outro lado.

9.1 Caso separavel

9.1.1 Problema primal

Passamos agora ao caso em que a amostra de treinamento S = {(x1,y1),..., (Xn, yn)} pode ser

perfeitamente separada por um hiperplano linear. Isso equivale a supor que existe um par
(w,b) € (RP\ {0}) x R tal que

Vie [n], vi({w,x;)+b)>0.

Ou seja, o hiperplano (w, x) + b = 0 separa corretamente todos os exemplos da amostra, classi-
ficando os pontos com y; = +1 de um lado e os com y; = —1 do outro.

No entanto, ha infinitos hiperplanos que satisfazem essa propriedade. A questdo é: qual
deles devemos escolher? O critério adotado pelas SVMs é selecionar o hiperplano com **maior
margem geométrica™.

A margem geométrica p;(x) de um classificador linear h(x) = (w,x) + b em um ponto x é a
distancia euclidiana desse ponto ao hiperplano de decisdo, dada por:

[(w, x) + b
Wl

pn(x) =

Essa formula pode ser demonstrada observando que a projecdo ortogonal de x sobre o hiper-
plano ocorre ao longo da diregdo w. Se considerarmos a reta r(t) = x + tw, o ponto de interse¢ao
com o hiperplano ocorre quando (w, x + tw) +b = 0, o que nos da

[(w,x)+b|

A distancia entre x e r(t') é entdo ||'w| = e

, como desejado.
Exercicio 15. Preencha os detalhes da dedugio geométrica da formula da margem.

A margem geométrica do classificador /1 em relagdo a amostra S = {xy,...,x,} é definida
como:

= min py(x;) = min ————
P = T ) = I ]

A SVM procura o hiperplano separador que maximiza essa margem minima — o chamado

hiperplano de margem méxima. Podemos entdo escrever o problema de otimizagdo como:

_ . [(w, x;) 4 b|
= max mm-—m———.
whiy(wx)+b)>0iclq  ||w]|
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Note agora que, para qualquer (w, b) que separa corretamente a amostra, temos y;((w, x;) +
b) > 0. Além disso, para tais (w, b), o valor absoluto pode ser removido pela identidade:

[(w, xi) + b = yi((W, x;) +b),
uma vez que o rétulo y; garante o sinal positivo da expressao. Assim, podemos escrever:

0 = maxmin yil{w. %) +b) b).
wh el [w]

Agora, note que a expressao

é invariante por multiplicagdo simultdnea de w e b por qualquer escalar positivo. De fato, se
substituimos (w,b) por (aw,ab), com « > 0, tanto o numerador quanto o denominador da
fragdo sdo multiplicados por «, e o fator se cancela.

Isso nos permite fixar a escala de (w,b) da forma mais conveniente. Uma escolha natural
é normalizar os parametros para que o menor valor de y;({(w, x;) + b) seja igual a 1. Sob essa

convengdo, a margem geométrica passa a ser

pzi

7
[[w]
e o problema de maximiza¢do da margem pode ser reformulado como:

1 1
p= max — = max —.
w,b i minge ) yi({(w,x;)+b)=1 (Wil whb:yi((wax)+b)=1,Vie[n] [|[w]|
A equivaléncia entre as duas expressdes decorre do fato de que, se (w, b) satisfaz as restrigdes
yi({w,x;) +b) > A > 1 para todo i, entdo podemos considerar os parametros reescalonados
(W, b') = (Ww/A,b/A), que satisfazem

(W) ) = (W) +8) 2 1,

com ||w'|| = ||w]||/A < ||w]|. Portanto, o par reescalonado obedece as mesmas restri¢des com
margem funcional minima igual a 1, e resulta em uma norma menor — ou seja, uma margem
maior. Isso mostra que, na formulagdo com > 1, a solugdo 6tima sempre ocorre no caso em que
o minimo ¢ igual a 1, justificando a troca da igualdade por desigualdade.

Como maximizar ||V1V7H é equivalente a minimizar ||w||, e mais convenientemente ||w|?, a

solucdo da SVM no caso separavel corresponde ao seguinte problema de otimizagdo convexa:

1 . .
min EHWHZ sujeitoa  y;((w,x;) +b) >1, Vie [n].
w,

A fungéo objetivo F(w) = 3||w||? é infinitamente diferenciével. Seu gradiente é VF(w) = w,
e a matriz hessiana é V2F(w) = I, a matriz identidade. Como todos os autovalores da hessiana
sdo estritamente positivos, segue que F ¢é estritamente convexa.
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9.1.2 Um pouco de otimizac¢ido convexa

Para resolver problemas de otimizagdo com restri¢des, uma ferramenta fundamental é o Lagran-
giano. Dado um problema de minimizagdo com restrigdes de desigualdade da forma

min f(z) sujeitoa gi(z) <0, i=1,...,m,
zeR4

o Lagrangiano associado é definido como

L) = f@)+ ) Agi(a)

i=1
onde A; > 0 sdo os multiplicadores de Lagrange. Intuitivamente, os termos A;g;(z) penalizam o
descumprimento das restrigdes g;(z) < 0.

As solugdes 6timas desse problema satisfazem as chamadas condigdes de Karush-Kuhn-
Tucker (KKT), que generalizam as condi¢des de otimalidade de Lagrange para problemas com
desigualdades. No caso em que f é convexa, g; sdo fungdes convexas e as restricdes sdo qua-
lificadas (por exemplo, hd um ponto estritamente vidvel), as condi¢des KKT sdo necessdrias e
suficientes para a otimalidade global.

As condi¢oes de Karush-Kuhn-Tucker (KKT) exigem que existam z* € R? e A* € R™ tais que:

* Estacionaridade: Vf(z*) + Y2, A¥Vgi(z*) =0;

Viabilidade primal: g;(z*) < 0 para todo i;

Viabilidade dual: A7 > 0 para todo i;

Complementaridade: A’g;(z*) = 0 para todo i.

9.1.3 Vetores de suporte

Voltando ao problema de otimiza¢do primal, notamos que as restri¢gdes sdo afins e, portanto,
qualificadas. Tanto a funcdo objetivo quanto as restricdes sdo continuamente diferencidveis e
convexas, o que garante, pelo que as condigdes KKT sdo vélidas no ponto 6timo.

Vamos introduzir varidveis de Lagrange «; > 0 associadas as n restri¢des, e denotar por
= (aq,... ,ucn)T € R’}. O Lagrangiano do problema primal é dado por:

1 n
L(w,b,a) = S||wl* =} ailyi((w,xi) +b) = 1]
i=1
As condi¢des KKT sao obtidas anulando o gradiente do Lagrangiano em relacao as varidveis
primais w e b, e impondo a condi¢do de complementaridade. Especificamente:

¢ Derivando em relagdo a w:

n n
Vwl =w— Z aiyixi=0 = w= sz,'y,'xi;
i—1 i=1

¢ Derivando em relacdo a b:

Vbﬁ = — Z(xiyi = 0,‘
i=1



9.1. CASO SEPARAVEL 93

¢ Condicdo de complementaridade:

a; (yi((w,x;) +b) —1) =0, paratodo i.

A primeira equagdo mostra que o vetor w na solucdo do problema é uma combinagéo linear
dos vetores da amostra. Um vetor x; contribui para essa combinagdo apenas se a; # 0. Tais
vetores sdo chamados de vetores de suporte.

Pela condigdo de complementaridade, sempre que a; # 0, temos y;((w, x;) +b) = 1, ou seja,
esses pontos estdo exatamente sobre as hiperplanos marginais (w, x) +b = £1.

Os vetores de suporte determinam completamente a solu¢do do problema. Vetores ndo su-
portes (¢; = 0) ndo afetam a posi¢do do hiperplano — sua presenca ou auséncia ndo altera a
resposta da SVM. Apesar de a solugdo (w,b) ser tnica (gracas a convexidade estrita do pro-
blema), os vetores de suporte ndo sdo necessariamente tinicos. Como qualquer hiperplano em
R? é definido por p pontos em posi¢do geral, bastam p + 1 vetores de suporte para determinar a
solugdo — embora, em geral, mais de p + 1 pontos possam estar sobre a margem.

Margin

.. 00

" Support Vector

Decision Boundary

O
000

Support Vector

v

9.1.4 Um breve comentario sobre dualidade

Dualidade é um conceito fundamental em otimizagdo. A ideia central é que, dado um problema
de minimizagdo (o chamado problema primal), podemos associar a ele um problema alternativo,
chamado dual, cuja estrutura pode ser mais simples ou mais informativa. Resolver o problema
dual, quando possivel, fornece um limite inferior (ou superior, no caso de maximizac¢do) para a
solucdo do primal.
Considere um problema de otimiza¢do com restri¢des de desigualdade da forma:
min f(z) sujeitoa gi(z) <0, i=1,...,m.
z€R?

Definimos o Lagrangiano associado como:

E(Z,)\) = f(Z) + i)\igi(Z), com )\i > 0.
i=1
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Para cada vetor de multiplicadores A > 0, a fungdo
d(A) :==1inf L(z, A)
z
define o valor dual correspondente, e o problema dual consiste em maximizar essa fungédo:

max d(A).
A>0

Esse valor dual fornece sempre um limite inferior para o 6timo do primal. De fato, se z é
viavel (isto é, satisfaz g;(z) < 0) e A > 0, entdo os termos A;g;(z) sdo ndo positivos, o que implica
que L£(z,A) < f(z). Em particular, isso vale para o ponto 6timo z*, o que nos dé

d(A) = ir;fﬁ(z,)t) < L(zF,A) < f(z%) = p".

Portanto, o valor 6timo dual d* satisfaz sempre d* < p*, o que é conhecido como dualidade fraca.
Isso mostra que o dual estd sempre “por baixo” do primal, e justifica a estratégia de maximizar
a fungdo dual para obter bons limites inferiores. A diferenca p* — d* é chamada de dual gap, e
mede o quanto estamos distantes da solugdo 6tima do problema original.

Em problemas convexos com restri¢des bem comportadas — por exemplo, se f e os g; sdo
convexos e existe um ponto estritamente viavel (g;(z) < 0 para todo i) — temos que o dual gap
é nulo, isto é, d* = p*. Esse resultado é conhecido como dualidade forte, e garante que podemos

resolver o problema primal indiretamente, via sua formula¢do dual, sem perda de exatidao.

9.1.5 Problema dual

Vamos agora derivar a formulacdo dual do problema primal da SVM. Para isso, substituimos no
Lagrangiano a expressdo de w em termos das varidveis dual «;, conforme obtida pela condicdo
KKT: .
W = Z aiyixi.
i=1
Substituindo essa expressdo no Lagrangiano e aplicando a condigdo de viabilidade }}' ; a;y; =0,
obtemos:

1 n
L= ) wyixi
2=

2 n n
— lei [yl ( Iij]'<x]', XZ‘> + b) — 1]
i=1 j=1

1 n n n
=5 2 angyiyilxi, x) = ) iy (xi ) +b) ey +
ij=1 i=1 =

n
o,
i=1

O segundo termo ¢ igual a duas vezes o primeiro, e o termo com b é zero devido a restrigdo

Y. a;y; = 0. Assim, obtemos:
n 1 n
L=) a— 5 Y aagyiyi(xi, xj).
i=1 ij=1
A formulagdo dual da SVM no caso separével é, portanto:

n 1 n
max Z;ai -5 ‘21 wiYiYi(Xi, Xj),
i= ij=
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n
sujeitoa a; >0, ) ay; =0.
i=1

A fungdo objetivo do dual é uma fungdo quadrética concava de &, pois a hessiana V2G = —A,
com A = (yiy;{xi, xj)), é negativa semidefinida (por ser o negativo de uma matriz de Gram).
Como as restri¢des sdo afins e qualificadas, temos que o problema dual é uma QP convexa com
dualidade forte. Isso garante que a solucdo 6tima do problema dual coincide com a do primal.

Uma vez encontrada a solugdo &, podemos determinar a hip6tese aprendida substituindo a
expressdo de w no classificador linear:

n
h(x) = sign((w, x) + b) = sign (Z oy, x) + b) .
i=1
Além disso, o valor de b pode ser obtido a partir de qualquer vetor de suporte x; tal que
a; > 0, usando o fato de que para esses pontos y;({(w, x;) + b) = 1, ou seja:

n
b= Yi — Z(x]y]<x], xi>.
j=1

As equagdes acima revelam uma caracteristica importante das SVMs: a hipétese aprendida
depende apenas de produtos internos entre exemplos de treinamento e o ponto de teste. Isso
serd crucial mais adiante, ao introduzirmos o método do kernel.

Também podemos usar a equagdo anterior para derivar uma expressdo da margem geomé-
trica p em fungdo das varidveis «. Multiplicando ambos os lados por «;y; e somando sobre os
vetores de suporte (a; > 0), obtemos:

szlyib = Zociyiz — Z zxiocjyiyj(xi, xj>.
i=1 i=1

ij=1

Como y? =1 e ¥ a;y; = 0, isso implica:

n
0=3 ai—[wl|?
i=1
ou seja,
’ n
lwil* =)
i=1
Como a margem geométrica é p = HlTH’ temos:

, 1 1 1

p = = == .
[wil> Xl el

Assim, a margem estd inversamente relacionada a norma-L! do vetor «.

9.2 Caso ndo separavel

No caso ndo separdvel, a suposi¢do de que existe um hiperplano que separa perfeitamente os
dados deixa de ser vélida. Para contornar isso, introduzimos varidveis de folga (slack variables)
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¢; > 0 que permitem violagdes marginais nas restrigdes. O problema primal torna-se:

n
min 1HWH2 +C) & sujeitoa y((w,x;)+b)>1-¢&, ¢ >0.
wbhe 2 =

No caso ndo separavel, introduzimos varidveis de folga {; > 0 para permitir que alguns
exemplos violem a margem, total ou parcialmente. O termo }_¢; penaliza essas violagdes, e o
parametro C > 0 controla o equilibrio entre maximizar a margem e permitir erros de classificagao.

O parametro C atua como um peso para a penalizacdo de pontos mal classificados ou que
ficam dentro da margem. Valores altos de C impdem uma penalizacdo severa a essas violagdes,
forcando o modelo a buscar uma separagdo quase perfeita dos dados de treinamento — o que
pode reduzir o viés, mas aumenta o risco de overfitting, especialmente na presenca de ruido.
Ja valores pequenos de C tornam o modelo mais permissivo a erros, favorecendo margens mais
largas e solugdes mais regulares, que tendem a generalizar melhor.

Portanto, C é um hiperparametro crucial, pois regula diretamente o trade-off entre complexi-
dade do modelo e erro de treinamento. Na prética, seu valor é escolhido por validagdo cruzada.

SVM com C =0.01 (tolerante) SVM com C =1000 (rigoroso)

2.0

A construcdo do problema dual segue de forma andloga ao caso separédvel: escrevemos o
Lagrangiano, aplicamos as condi¢des KKT e eliminamos as varidveis primais w, b e agora também
as ¢;. A tinica modificagdo estrutural importante no dual é a restricdo 0 < a; < C, que substitui a
condigdo a; > 0 do caso separavel. Isso reflete o fato de que agora ha um custo controlado para
violagdes de margem. A funcdo objetivo, a restricdo ) a;y; = 0, e a expressdo da hipétese final
mantém a mesma forma.

9.3 O truque do kernel

Na formulagdo primal da SVM, o classificador é linear, ou seja, sua fronteira de decisdo é um
hiperplano no espaco original dos dados. No entanto, a formulagdo dual revela uma estrutura
importante: a solugdo 6tima depende apenas de produtos internos entre os dados de treina-
mento.

Mais precisamente, o classificador obtido a partir da solu¢do dual é da forma:

h(x) = sign Zuciyi<xi,x) +b],
i=1
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onde os coeficientes «; sdo determinados pela solu¢do do problema dual. Note que os dados
aparecem apenas por meio de produtos internos (x;, x).

Essa observacdo permite generalizar a SVM para casos nao lineares. A ideia é supor que
os dados, embora ndo separaveis no espago original IR?, possam ser linearmente separédveis em
um espaco de dimensdo maior (possivelmente infinita), obtido por um mapeamento ndo linear
¢ : RP — H. Em vez de trabalhar diretamente com ¢(x), utilizamos uma fungdo kernel K(x, x")

que satisfaz:
K(x, x') = (¢(x), 9(x')).

Dessa forma, substituimos os produtos internos (x;, x;) por K(x;, x;) no problema dual. Como
o dual depende apenas desses produtos, todo o algoritmo passa a operar implicitamente no es-
paco transformado #, sem necessidade de calcular ¢(x) explicitamente. Esse artificio é conhecido
como truque do kernel.

Exemplos clédssicos de fungdes kernel incluem:

e Linear: K(x,x') = (x,x')

e Polinomial: K(x,x") = ({x,x") 4 c)?

* Gaussiano (RBF): K(x,x") = exp (—7||x — x’||?)

Com isso, as SVMs passam a ser capazes de aprender fronteiras de decisdo ndo lineares,

mantendo as garantias teéricas e a robustez do caso linear.

C=1 C =100 C =10000
Treino: 0.80 | Teste: 0.82 Treino: 0.82 | Teste: 0.83 Treino: 0.86 | Teste: 0.79

9.3.1 Formulac¢des primal e dual com kernel

O uso de kernels nao altera conceitualmente o problema primal, mas transforma completamente
a formulagdo dual. No espago de caracteristicas H, o problema primal com slack é:

N R .
— C .
min o ffwi®+ Z_{C

sujeitoa  y;((w,¢(x;)) +b) >1-¢&;, & >0.

Entretanto, como ¢(x) pode ser de dimensdo muito alta, resolvemos o problema dual, onde
os dados aparecem apenas via produtos internos. A formulagdo dual com kernel é:
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n 1 n

max Zizxi -3 Z wieejyiyiK(xi, x;)
1=

« ij=1

sujeitoa 0<w; <C, Vi
n
Z XYy = 0.
i=1

Por fim, o classificador aprendido é dado por:

h(x) = sign (Zn; a;yiK(x;, x) + b) ,

=1

onde apenas os vetores de suporte (aqueles com «; > 0) contribuem para a decisdo final.



Capitulo 10

Reduc¢ao de dimensao

Em muitos problemas de aprendizado de maquina e anélise de dados, lidamos com conjuntos
de dados de alta dimensdo, nos quais cada observagdo é descrita por um grande ntimero de
varidveis (ou atributos). Embora alta dimensionalidade permita capturar muitos aspectos dos
dados, ela também pode trazer dificuldades tanto computacionais quanto estatisticas.

* Sobreajuste (overfitting): Em espagos de alta dimensao, é mais facil encontrar fun¢des que
se ajustem perfeitamente aos dados de treinamento, mas Andlise de componentes princi-
paisque generalizam mal.

* Custo computacional: Métodos de aprendizado e visualizagdo podem se tornar invidveis

conforme cresce a dimensionalidade.

* Ruido e redundancia: Muitas varidveis podem ser irrelevantes ou fortemente correlaciona-
das, adicionando ruido ao modelo e dificultando sua interpretagao.

A redugdo de dimensionalidade busca transformar os dados para um espaco de menor di-
mensdo preservando, na medida do possivel, suas caracteristicas essenciais.

Neste capitulo, abordamos métodos ndo supervisionados de redugdo de dimensionalidade,
com énfase na Andlise de Componentes Principais (PCA) e t-SNE.

10.1 Anadlise de componentes principais

Seja A € RP*P uma matriz simétrica, isto é, tal que AT = A. Um resultado fundamental da
algebra linear garante que toda matriz simétrica admite uma decomposicao espectral da forma

A=QAQT,
onde:
e Q € RP*? é uma matriz ortogonal, ou seja, Q' Q = [;
e A € RP*P é uma matriz diagonal contendo os autovalores reais de A;
e As colunas de Q sdo os autovetores ortonormais de A.

99
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Essa decomposicdo nos permite interpretar A como uma combinagdo linear de proje¢des ao
longo de diregdes ortogonais, ponderadas por seus respectivos autovalores:

p
A=Y Naqiq,
i=1
onde A; é 0 i-ésimo autovalor e g; é o autovetor correspondente.

A decomposigdo espectral A = QAQ' de uma matriz simétrica A € RP*? pode ser inter-
pretada geometricamente como a composicdo de trés transformacdes lineares: uma rotagdo (ou
mudanga de base ortogonal), seguida de uma dilatagdo ao longo dos eixos coordenados, seguida
por outra rotagdo. Especificamente, a matriz Q' realiza uma rotagdo que alinha os vetores do
espago com os autovetores de A, a matriz diagonal A aplica dilatagdes (ou contragdes) escalares
ao longo dessas diregdes, e a matriz Q retorna ao sistema original de coordenadas.

Essa interpretacdo mostra que, a menos de rotagdes, o comportamento essencial da trans-
formagdo associada a A é determinado por A, ou seja, pelos autovalores. Em particular, os
autovalores descrevem quanto uma forma esférica é alongada ou comprimida ao longo das di-
recdes associadas a cada autovetor. Portanto, do ponto de vista geométrico, entender a acdo
de uma matriz simétrica sobre o espaco equivale a entender os valores em A, pois as rotagdes
preservam angulos e distancias relativas, ndo alterando a natureza da deformac¢do — apenas sua
orientagdo.

A ideia central da andlise de componentes principais (PCA) é aplicar a decomposicdo es-
pectral a uma matriz simétrica construida a partir dos dados, com o objetivo de entender e
simplificar sua estrutura de variabilidade.

Seja X € R"*F a matriz de dados, onde cada linha representa uma observagdo e cada coluna
corresponde a uma varidvel. Para aplicar o PCA corretamente, é necessario que os dados estejam
centralizados — isto é, cada varidvel deve ter média zero. Na prética, isso é feito subtraindo a
média de cada coluna da matriz X. Denotando por y; = iye Xij a média da j-ésima coluna,

construimos uma nova matriz X € R"*? cujos elementos sdo dados por

Xij = Xij — Y.
Essa centralizagdo garante que a matriz de covariancia empirica S = %XTX capture apenas a
variabilidade em torno da média, o que é essencial para que o PCA identifique corretamente as
dire¢des principais de variacdo dos dados.
Aplicando a decomposicdo espectral a matriz S, obtemos

§=0AQ",

onde as colunas de Q sdo autovetores ortonormais (as componentes principais) e os valores em A
sdo os autovalores ndo negativos que indicam a varidncia dos dados ao longo dessas diregdes.

Projetar os dados X nas dire¢des dadas pelas colunas de Q resulta em novas varidveis ndo
correlacionadas, ordenadas de forma que as primeiras carregam a maior parte da varidncia dos
dados. Isso nos permite realizar reducdo de dimensionalidade: ao manter apenas os k < p
primeiros autovetores, obtemos uma representacdo aproximada dos dados que preserva a maior
parte de sua variabilidade.
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Assim, o PCA pode ser entendido como uma mudanga de base ortogonal para uma nova
coordenada onde as dire¢des estdo alinhadas com as elipses de nivel da matriz de covariancia. A
deformacéo eliptica observada na decomposicdo espectral se torna, neste contexto, a ferramenta
que revela quais sdo as dire¢des de maior variagdo — e, portanto, de maior interesse estatistico
— na distribuicao dos dados.

Transformacdo completa A=QAQ T Acao apenas de A: sem rotagcao
15}
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Os autovalores obtidos na decomposicao espectral da matriz de covariancia S = 1XTX re-
presentam a quantidade de varidncia dos dados explicada por cada componente principal. Mais
precisamente, se Ay,...,A, sdo os autovalores ordenados de forma decrescente, entdo Aq indica
a variancia dos dados ao longo da primeira diregdo principal (isto é, a direcdo que maximiza a

variancia), A, a varidncia na segunda dire¢do mais importante, e assim por diante.

10.1.1 Variancia explicada

Seja X € R"™ " a matriz de dados centralizada, isto é, cada coluna tem média zero. A matriz de

covaridncia empirica dos dados é entdo

S=-X"X.

Q|-

Essa matriz S é simétrica e semi-definida positiva, e representa as covaridncias entre todas as

variaveis. Em particular, sua entrada S;; na diagonal ¢é a variancia da variavel j-ésima:

1 & .

i=

O trago de S, que é a soma dos elementos diagonais, satisfaz
4 4
tr(S) = ZSJ']‘ = ZVar(Xj),
j=1 j=1

ou seja, o trago de S é a soma das varidncias das p varidveis.
Por outro lado, como S é simétrica, ela admite uma decomposicao espectral S = QAQ', onde
A = diag(A4,...,Ap) contém os autovalores de S. Um fato fundamental da édlgebra linear garante
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que o trago de uma matriz é igual a soma de seus autovalores:

p

tl‘(S) = Z /\]

j=1

Portanto, a soma dos autovalores de S é exatamente igual a soma das varidncias das varidveis
originais. Isso mostra que os autovalores representam como a variancia total dos dados é distri-
buida entre as diferentes dire¢des principais.

O valor total da varidncia nos dados é dado pela soma dos autovalores,

p
Var total = Z A]-,
j=1

e a proporgdo da varidncia explicada pela k-ésima componente principal é

Ak
Z];'?:l Aj

Proporgao explicada por k =

Essas proporcdes fornecem uma medida quantitativa de quanta informagdo (no sentido de va-
riabilidade dos dados) estd concentrada em cada diregdo principal. Isso permite, por exemplo,
decidir quantas componentes manter em uma reducdo de dimensionalidade: basta escolher o
menor k tal que a soma das k primeiras proporcoes seja suficientemente préxima de 1 (por exem-
plo, 90% ou 95%).

Essa interpretacdo dos autovalores como varidncia explicada torna o PCA ndo apenas uma
ferramenta geométrica, mas também estatistica, permitindo compreender e resumir conjuntos de

dados de alta dimensdo com base em sua estrutura de variacao.

10.1.2 Decomposicdao em valores singulares

Seja A € R"*?P uma matriz qualquer. Consideramos a matriz simétrica ATA € RP*P, que é

semi-definida positiva. Como tal, ela admite uma decomposicdo espectral da forma
ATA=VAVT,

onde V € RP*P é ortogonal e A = diag(Ay, ... ,/\p) contém os autovalores reais e ndo negativos
de AT A, que podemos ordenar como Ay > -+ > A, >0=A, 11 =--- = Ay, comr = rank(A).
Definimos os wvalores singulares de A como 0; = /A; paraj = 1,...,r. Os vetores v; € R?
(colunas de V) satisfazem
ATAU]' = Ajv;.

Multiplicando ambos os lados por A, obtemos:
AAT (Avj) = A(AT Avj) = A;Av;.

Ou seja, Av; é um autovetor de AA" associado ao mesmo autovalor A;. Definimos
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0 que é bem definido pois 0; > 0. Assim, os vetores u; € R" tém norma unitéria e satisfazem:
S — O Ty = oo
Avi=oju; e A uj=0jv;.

Tomando U, = [ug --- u,] € R™, V, = [v1 --- v,] € RP*" e X, = diag(cy,...,0,) € R,
temos a fatoracdo
A=Ux,V, .

Essa é a forma reduzida da decomposigdo em valores singulares (SVD). Podemos completé-la
para obter a SVD completa estendendo U, e V, para bases ortonormais completas U € R"*" e
V € RP*P, e definindo ¥ € R"*P como a matriz retangular que contém 3., no canto superior
esquerdo e zeros no restante. Com isso, temos:

A=UxV'.

Logo, a SVD pode ser rigorosamente derivada a partir da decomposicdo espectral de A" A
e da relagio AA' (Avj) = AjAvj, 0 que mostra que os vetores Av; também sdo autovetores de
AAT.

Intuicao geométrica

Consideramos uma matriz real A € R"*?. A imagem da esfera unitaria S = {x € R? : ||x| = 1}
sob a transformacao linear A é uma superficie chamada hiperelipse em R". Essa superficie é obtida
ao esticar a esfera unitdria em até r = rank(A) dire¢des ortogonais. As direcdes e os fatores de
estiramento sdo determinados pelos valores singulares de A.

& (B A
[eAT )
—
S i AS
Figure 4.1. SVD of a 2 x 2 matriz.
Figura 10.1: Retirado de (Trefethen and Bau, 1997).
Mais precisamente, os valores singulares oy > 02 > --- > 0, > 0 correspondem aos com-

primentos dos semieixos principais da hiperelipse. Para cada j = 1,...,r, temos que Av; = oju;,
onde:

* v; € RP € 0 j-ésimo vetor singular a direita, ou seja, uma diregdo unitdria na entrada que é
alongada por A;
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* u; € R" é o j-ésimo vetor singular a esquerda, que indica a diregdo de saida correspon-

dente.

Essas relacdes podem ser organizadas matricialmente como

AV, = U,%,,
onde:

e V,=lv1 -+ v € RPY,

o U, =[uy -+ u] € R,

e ¥, =diag(cy,...,0,) € R™.

Como V; tem colunas ortonormais, podemos escrever
A=Ux,V,

que é a forma reduzida da decomposicdo em valores singulares (SVD). A forma completa é
obtida ao estender U, e V, para bases ortonormais completas:

A=UxV',
onde:
e U € R"™" é ortogonal (isto &, uru =i
e V € RP*P é ortogonal;
e ¥ € R"™7 é uma matriz diagonal retangular, com os valores singulares o7 > 0o > --- >
0y > 0 nas primeiras entradas da diagonal, e zeros no restante.

Teorema 4 (Teorema da existéncia e unicidade da SVD). Toda matriz A € R"*P admite uma de-
composigdo da forma A = ULV ". Os valores singulares o sio unicamente determinados. Se os valores
singulares forem distintos, entilo os vetores singulares a esquerda u; e a direita v; também sdo unicamente
determinados a menos de sinais.

A U ) V=

Figura 10.2: Ilustragdo do SVD. Retirado de (Trefethen and Bau, 1997).

Exercicio 16. Prove que o posto de uma matriz A é igual ao niimero r de valores singulares nio nulos.
Exercicio 17. Prove que a imagem de uma matriz Im(A) = (uq, - - - ,u,) e seu niicleo N(A) = (vp11,- -+ ,0y).

Exercicio 18. Encontre uma expressio para N(A)* e uma para Im(A") utilizando a decomposicio SVD
de A.
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SVD e PCA

Seja X € R"*P uma matriz de dados, onde cada linha corresponde a uma observacdo e cada
coluna a uma varidavel. Suponha que X ja foi centralizada, ou seja, a média de cada coluna é zero.
A matriz de covariancia empirica dos dados é dada por

1

=-X"X.
n

S

Como S é simétrica e semi-definida positiva, ela admite uma decomposicdo espectral da forma
S = VAVT, onde as colunas de V € RP*P sdo os autovetores de S, chamados de componentes
principais, e A = diag(Ay,...,A,) contém os autovalores ndo negativos correspondentes, que
representam a varidncia dos dados ao longo dessas direcdes.

Por outro lado, podemos aplicar a decomposicao em valores singulares (SVD) diretamente a

matriz X:
X=Uuxv'T,

com X = diag(cy,...,0,) € R"?, onde g; sdo os valores singulares de X, e r = rank(X). Entdo:
X'X=ve'zv',

de modo que:
1

n

S X'X=V (izﬁ) v

Isso mostra que os autovalores de S sdo A; = (T]-Z/ n, e os autovetores de S sdo exatamente os
vetores singulares a direita de X, isto é, as colunas de V. Portanto, a andlise de componentes
principais pode ser realizada a partir da SVD da matriz de dados centralizada: os vetores prin-
cipais sdo os vj, e as variancias explicadas correspondem aos quadrados dos valores singulares

normalizados por 7.

Aproximagdes de posto baixo

Seja A € R"*? e considere sua decomposi¢ao em valores singulares:

r
_ T
A= Z ojuv;
j=1
onde r = rank(A), os vetores uj € R" e v; € IR? sdo ortonormais, e os valores singulares
satisfazem o7 > --- > 0, > 0. Para cada v € {0,1,...,r}, define-se a aproximagdo de posto v

como

v

-

A, = Zajujvj .
j=1

Teorema 5. Seja A € R"*F uma matriz qualquer, e A, a aproximagio de posto v definida acima. Entdo,
para todo v, temos:
[A=Aulla="inf "[|A=B>= o1,
BER™*?
rank(B)<v

com a convengio de que 0,41 = 0 se v = min(n, p).
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Esse resultado mostra que a melhor aproximagdo de A por uma matriz de posto no maximo
v, no sentido da norma espectral, é obtida truncando sua decomposi¢cdo em valores singulares
e mantendo apenas os v primeiros termos. Além disso, o erro de aproximagdo é exatamente o
proximo valor singular descartado, ou seja, a maior deformagdo nédo capturada por A,.

Quando A = X é uma matriz de dados centralizada, com X € R"*?, a decomposi¢do X =
U=V pode ser usada para obter as componentes principais (PCA). O truncamento da SVD em
v termos fornece a matriz X, = U,%,V,”, que é a projecio dos dados nas v primeiras direcdes
principais. O teorema acima garante que X, é a melhor representacdo possivel dos dados entre

todas as matrizes de posto v, no sentido de minimizar a norma espectral do erro:
HX - XVHZ = Oy+1-

Essa propriedade justifica o uso do PCA como uma técnica de redugdo de dimensionalidade com
controle explicito sobre a perda de informagdo.

10.1.3 Aplicacdo: reducao de dimensao

Como exemplo prético de aplicagdo da andlise de componentes principais (PCA), consideramos o
conjunto de dados digits, disponivel na biblioteca scikit-learn. Esse conjunto contém imagens
de digitos manuscritos de 0 a 9, cada uma representada por uma matriz 8 x 8 de pixels, ou seja,
um vetor em R®.

A matriz de dados X € R797%64 contém n = 1797 observacdes, cada uma correspondente
a uma imagem achatada com p = 64 varidveis. Aplicamos o PCA a X apés centralizar suas
colunas, e projetamos os dados nas duas primeiras componentes principais.

Projecao PCA dos Digitos Manuscritos (2D)
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O resultado é uma nuvem de pontos em R?, onde cada ponto corresponde a uma imagem
original e estd colorido de acordo com o digito representado. Observamos que, mesmo apds a
redugdo para duas dimensdes, as diferentes classes de digitos ainda apresentam agrupamentos
visivelmente distintos. Isso evidencia que as duas primeiras componentes principais capturam

uma quantidade substancial da estrutura de variabilidade dos dados.
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Essa aplicagdo ilustra como o PCA pode ser utilizado para:
® Reduzir a dimensionalidade de dados de alta dimensdo com minima perda de informacao;
* Visualizar a estrutura interna dos dados em duas ou trés dimensdes;

¢ Explorar padroes e possiveis agrupamentos em dados nado rotulados.

10.1.4 Aplicacdo: compressao de dados

Para ilustrar uma aplicagdo pratica da decomposicdo SVD, utilizamos uma imagem em tons de
cinza e reconstruimos aproximagdes de posto reduzido variando o ndmero de componentes k.
A cada valor de k, reconstruimos a imagem utilizando apenas os k maiores valores singulares e
seus vetores associados. O objetivo é verificar até que ponto é possivel reduzir a quantidade de
informagdo armazenada sem comprometer significativamente a qualidade visual da imagem.

Original

Cada imagem reconstruida foi salva no formato PNG, e em seguida medimos seu tamanho em
kilobytes. Isso nos permite avaliar empiricamente o impacto de k no espago ocupado em disco,
levando em conta também a compactacao realizada pelo formato PNG. Além disso, comparamos
esses tamanhos com o da imagem original, também salva em PNG.

Os resultados mostram que para valores baixos de k, a imagem perde detalhes, mas o tama-
nho do arquivo é drasticamente reduzido — evidenciando compressdo com perda. A medida
que aumentamos k, a imagem se aproxima da original em termos visuais, e o tamanho do ar-
quivo cresce progressivamente. A curva gerada revela o ponto a partir do qual adicionar mais
componentes singulares tem impacto marginal na qualidade visual, mas aumenta o tamanho do
arquivo.

Tamanho da imagem comprimida com SVD
140}
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Essa aplicacdo demonstra como a SVD pode ser usada como um método de compressdao
controldvel: quanto menor o k, maior a compressdo (com mais perda de informagdo), e quanto

maior o k, melhor a qualidade visual, com custo maior de armazenamento.

10.2 Projecdes aleatérias

Seja U € RP*? uma matriz ortogonal, ou seja, satisfaz U U = I. Nesse caso, para qualquer vetor
x € R?, temos:

|Ux||>=x"U"Ux = x"x = ||x||%

Ou seja, transformagdes lineares ortogonais preservam normas e angulos. Geometricamente, isso
significa que U é uma rotagdo (ou rotacdo seguida de reflexdo) do espaco, e ndo altera distancias
entre pontos.

Essa propriedade sugere que, ao projetar dados em uma base ortonormal (ou aproximada-
mente ortonormal), podemos manter a estrutura geométrica essencial. Mais ainda, em espagos
de alta dimens&o, ocorre um fendmeno conhecido como concentragio da medida, que implica que,
com alta probabilidade, dois vetores x,y € R” escolhidos ao acaso estardo quase ortogonais, ou
seja, o cosseno do dngulo entre eles serd préoximo de zero. Intuitivamente, isso significa que, a
medida que a dimensdo cresce, 0 espago se torna "mais esférico", e vetores aleatérios tendem a
se distribuir de forma aproximadamente ortogonal.

A preservagdo de normas por matrizes ortogonais motiva a busca por projegdes lineares
que preservem, ao menos aproximadamente, distdncias euclidianas. De fato, se U € RF*? ¢
ortogonal, entdo ||Ux|| = ||x|| para todo x € R?, e |[Ux — Uy|| = ||x — y|| para todos os pares x,y,
ou seja, a transformacgdo preserva completamente a geometria euclidiana.

Esse tipo de preservacado exata s é possivel quando a projecdo acontece em todo o espago R”,
mas uma pergunta natural é se existe alguma forma de preservar aproximadamente as distancias
quando projetamos para um subespaco de dimensao k < p.

Intuitivamente, a resposta é positiva se nos restringirmos a um conjunto finito de vetores. A
ideia central é que, em alta dimensdo, vetores aleat6rios tendem a ser quase ortogonais. Mais
precisamente, se sorteamos dois vetores x,y € R” de maneira independente, com entradas ~
N(0,1), entdo o angulo entre eles tende a ser proximo de 71/2, e a norma de x — y concentra
em torno de \/27) Esse fenomeno de concentragio da medida sugere que vetores aleatérios bem
escolhidos podem servir como base aproximadamente ortonormal com alta probabilidade.

Esse insight leva a ideia de gerar uma matriz aleatéria R € R**? com entradas i.i.d. N'(0,1),
e definir a aplicagdo linear

flx) = LRx.
vk
O fator ﬁ garante que a variancia da norma de f(x) ndo cresca artificialmente com k. Pode-
mos entdo perguntar: essa projecdo aleatéria f preserva as distancias entre vetores de maneira
controlada?

A resposta é afirmativa, como garantido pelo seguinte resultado:
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Teorema 6. Seja 0 < ¢ < 1en € IN. Para qualquer conjunto fixo de n vetores x1,...,x, € RP, existe
uma aplicagdo linear f : RP — RF com
logn

k>c=8

para uma constante absoluta C, tal que, para todos os pares i,j € {1,...,n},

(1= o)llx; — x> < [1f (i) = fFQp)IIP < (1) [l — x|

Além disso, tal aplicacio pode ser escolhida como uma projecio aleatéria do tipo f(x) = -LRx, onde

T Vk
R € R*¥? tem entradas independentes N'(0,1).

Esse resultado mostra que é possivel reduzir a dimensionalidade de um conjunto finito de
pontos de alta dimensdo para um espaco de dimensdo apenas O(logn), mantendo as distancias
aproximadamente preservadas com erro relativo controlado por e. Essa técnica é conhecida como
projecdo aleatoria, e tem aplicagdes em diversas dreas, como:

¢ Compressdo de dados de alta dimens&o;

® Aceleragdo de algoritmos baseados em distancias, como k-NN;
* Redugdo de custo computacional em aprendizado de maquina;
* Preservacdo de estrutura geométrica em embeddings.

Na pratica, a matriz R pode ser gerada uma tnica vez, aplicada a todos os vetores de interesse,
e fornece uma transformagéo linear eficiente e universal. Embora a projegdo seja aleatdria, o
resultado acima garante que, com alta probabilidade, ela funcionara corretamente — desde que
a dimensdo do subespago k seja suficientemente grande em relagdo a logn.

10.2.1 Aplicagao

Como exemplo prético da aplicagdo do teorema de preservagdo de distancias por projec¢oes ale-
atdrias, consideramos novamente o conjunto de dados digits, composto por imagens de digitos
manuscritos, cada uma representada por um vetor em R®. Nosso objetivo é reduzir a dimen-
sionalidade desses dados para IR?, preservando aproximadamente a estrutura geométrica do
conjunto, mas agora utilizando uma transformagéo aleatéria.

Construimos uma projecio aleatéria f : R®* — R? da forma

f(x) = éRx,

onde R € R?*®* tem entradas independentes R;; ~ N (0,1). Cada vetor x € R® é entdo projetado
em um vetor f(x) € R?, e essa transformagéo é aplicada a todas as amostras do conjunto.

O resultado é uma nuvem de pontos em duas dimensdes, onde cada ponto representa uma
imagem projetada e é colorido de acordo com o digito correspondente. Apesar da projecao
ser inteiramente aleatdria, ainda é possivel observar agrupamentos e certa separagdo entre as
diferentes classes, o que evidencia que as relagdes geométricas entre os dados foram, em parte,

preservadas.
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Projecao Aleatéria Gaussiana dos Digitos Manuscritos (2D)
Digito
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Esse experimento ilustra a aplicabilidade prética do teorema de preservacdo de distancias:
mesmo com uma reducdo dréstica da dimensdo de 64 para 2, a projecdo aleatéria preserva, com
razodavel fidelidade, a estrutura global dos dados. Isso torna tais proje¢des tteis em tarefas como
visualizagdo, aceleracdo de algoritmos e pré-processamento para métodos de aprendizado de

maquina em ambientes de alta dimensao.

10.3 t-SNE

Uma técnica bastante utilizada para visualizagdo de dados de alta dimensdo é o t-distributed
Stochastic Neighbor Embedding (t-SNE). Ao contrdrio do PCA e das projegdes aleatdrias, que sdo
transformacdes lineares, o t-SNE é um método ndo linear, projetando dados de alta dimensao
em duas ou trés dimensdes de modo que as relagdes de vizinhanca local entre os pontos sejam
preservadas.

A ideia central do t-SNE é transformar distancias euclidianas entre pontos de alta dimensdo
em probabilidades que representam a semelhanga entre pares de pontos. Mais precisamente,
dados pontos x1, ..., x, € RP, o algoritmo define, para cada par (i, j), a probabilidade condicional

b _ P (—llxi — xj||?/207)
jli — Y ex (—||x'—x ||2/2(72),
ki EXP i k i

2 .

onde 0; € ajustado automaticamente de modo que a entropia da distribuicdo Pj; reflita uma
perplexidade pré-definida. A matriz P de semelhancas simétricas é entdo definida por:

Pyt By
o 2n )

No espaco de baixa dimensao, y1,...,y, € R?, 0 t-SNE define uma distribuicio de semelhanca
Qjj entre pares usando uma distribui¢do de cauda mais pesada (distribuigdo de Student com um



10.3. T-SNE 111

grau de liberdade, também chamada de Cauchy):

-1

0. = (1+ llyi — y11?)
] — -1
Yiert (L4 v — w7

O algoritmo entdo encontra os vetores y; € IR?> que minimizam a divergéncia de Kull-
back-Leibler entre as distribui¢des P e Q:

KL(PJQ) = L ylog ().
i#j )

Como o foco do t-SNE é preservar relagdes locais, ou seja, quais pontos sdo proximos uns dos
outros, ele é especialmente eficaz para revelar agrupamentos (clusters) e separa¢des em dados
que estdo em variedades ndo lineares. Em contrapartida, o método ndo tenta preservar distancias
globais — por isso, as distancias entre grupos no espago reduzido podem ndo refletir relagdes
verdadeiras no espaco original.

Dessa forma, o t-SNE é particularmente ttil como ferramenta de visualizagdo exploratéria,
ajudando a identificar estruturas internas nos dados, mesmo quando essas estruturas ndo sio

acessiveis por métodos lineares como o PCA.

10.3.1 Aplicacdo 1

Aplicamos o método t-SNE ao conjunto de dados digits, composto por imagens de digitos
manuscritos representadas por vetores em R®. O objetivo foi reduzir essa representacdo para
duas dimensodes de forma que as relagdes de vizinhanga entre os pontos fossem preservadas.
Ao contrario de técnicas lineares como o PCA, o t-SNE busca manter as proximidades locais
entre os dados. Ele constréi uma distribuicdo de probabilidades que mede a similaridade entre
pares de pontos no espago original e outra no espaco reduzido, e encontra uma projecao que

minimiza a divergéncia entre essas duas distribuicdes.

Visualizagao dos Digitos com t-SNE (2D)

Digito

40 +

201

VW ONOUV A WN RO

tSNE2

—20 4

—40 4

-60

O resultado é uma visualizagdo bidimensional onde os pontos associados a diferentes digitos
tendem a formar agrupamentos bem definidos. Isso mostra que, mesmo sem conhecer os rétulos,



112 CAPITULO 10. REDUCAO DE DIMENSAO

o t-SNE consegue capturar a estrutura interna dos dados e separar classes de forma qualitativa.
Essa abordagem é especialmente ttil para visualizagdo exploratéria de dados de alta dimensao.
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K-Médias

O agrupamento por K-médias é uma abordagem simples e elegante para particionar um con-
junto de dados em K grupos distintos e ndo sobrepostos. Para aplicar o K-médias, é necessario
especificar previamente o nimero de grupos K; entdo o algoritmo atribui cada observagao exa-
tamente a um dos K grupos. A Figura 12.7 mostra os resultados obtidos ao aplicar o método de
K-médias em um conjunto simulado com 150 observa¢des em duas dimensdes, utilizando trés
valores diferentes de K.

O procedimento de agrupamento por K-médias decorre de um problema matematico sim-
ples e intuitivo. Comecamos definindo a notagdo. Seja Cj,...,Ck o conjunto dos indices das
observacoes pertencentes a cada grupo. Estes conjuntos satisfazem duas propriedades:

e CUCGU---UCkx ={1,...,n}. Ou seja, cada observagao pertence a pelo menos um dos K
grupos.

* CyNCp = @ para todo k # k. Em outras palavras, os grupos sdo ndo sobrepostos: ne-

nhuma observagdo pertence a mais de um grupo.

Se a i-ésima observagao pertence ao grupo k, entdo i € Ci. A ideia por trds do agrupamento
por K-médias é que um bom agrupamento é aquele em que a varia¢do intra-grupo é a menor
possivel. A variacdo intra-grupo para o grupo C; é uma medida W(Cy) da diferenga entre as
observagoes dentro do grupo. Assim, queremos resolver o seguinte problema de otimizagao:

C1,--.Ck

K
min { Y. W(Ck)} : (11.1)
k=1

Em palavras, a férmula acima diz que queremos particionar as observacdes em K grupos de
modo que a variagdo total intra-grupo, somada em todos os K grupos, seja a menor possivel.

Resolver o problema acima parece uma ideia razoavel, mas para torna-la executavel, precisa-
mos definir precisamente a variacdo intra-grupo. Existem diversas maneiras possiveis de fazer

isso, mas a mais comum é usar a distdncia euclidiana ao quadrado. Isto é, definimos:

W(C

Z Z Xij — xp;)* (11.2)

| k ii'eCy j=1
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onde |Cy| denota o nimero de observagdes no grupo k. Em outras palavras, a variacdo intra-
grupo para o grupo k é a soma de todas as distancias euclidianas ao quadrado entre pares de
observagdes dentro do grupo k, dividida pelo ntimero total de observagdes no grupo.

Combinando as equagdes anteriores, obtemos o problema de otimizacdo que define o agru-
pamento por K-médias:

K P
1 Z Z

i 2 1 (xz-]- . xi’j)z} . (11.3)
Cl/"'/CK {k—l |Ck‘ i/i/ECk ]:1

Esse problema de otimizagdo visa particionar as observagdes em K grupos de modo que a
soma total da variagdo intra-grupo (em todos os grupos) seja a menor possivel. No entanto,
resolver esse problema diretamente é muito dificil, pois hd aproximadamente K" maneiras de
particionar n observagdes em K grupos.

Felizmente, existe um algoritmo simples que encontra uma boa solugdo local — uma boa
solugio, embora ndo necessariamente 6tima — para o problema. Esse método é apresentado no

Algoritmo:

Algorithm 8 K-médias
1. Atribua aleatoriamente um ntmero de 1 a K para cada observagao (isto é, atribui¢des inici-

ais de grupo).
2. Repita até que as atribui¢des de grupo ndo mudem mais:

(a) Para cada um dos K grupos, calcule o centrdide, isto €, o vetor de médias das p varidveis
dentro do grupo.

(b) Atribua cada observacdo ao grupo cujo centrdide estd mais préximo (usando distancia
euclidiana).

O algoritmo acima garante que o valor da fungdo objetivo ird diminuir a cada passo. Isso
pode ser entendido por meio da seguinte identidade:

Z E xij = xij)? =2 ) Z Xij — Xij)’ (11.4)

’ k ii'eCy j=1 ieCy j=1
onde ¥y = ﬁ Yicc, Xij € a média da j-ésima varidvel no grupo C.

No passo 2(a), os centréides de cada grupo sdo essas médias que minimizam a soma dos
desvios ao quadrado; e no passo 2(b), ao realocar as observagdes para os grupos mais proximos,
o valor da funcédo objetivo s6 pode diminuir.

Isso significa que, ao executar o algoritmo, o agrupamento obtido vai melhorar continuamente
até que o resultado pare de mudar. Quando isso acontece, atingimos um minimo local, ou seja, a
fungdo objetivo ndo ird mais diminuir.

O nome K-médias vem do fato de que, no passo 2(a), os centréides dos grupos sdo calculados
como a média das observagdes atribuidas a cada grupo.
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Como o algoritmo encontra apenas um minimo local e ndo global, o resultado obtido pode
depender bastante da atribuigdo inicial aleatéria dos grupos (passo 1). Por isso, é importante exe-

cutar o algoritmo vérias vezes com diferentes configuragdes iniciais e escolher a melhor solucao
(aquela com menor valor da funcdo objetivo).

Data Step 1 Iteration 1, Step 2a
- . .
- -
.. - - ® o [ TR . o TR .
L gete ! ’ .,y 'q H B ‘-: ": .
° :-. .- s '.. . ’ :o . ’ .
. . . . . . - “ .
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L] e - . . - [
LI . B . 9. -
. . . ™ L ]
"-‘: TR s e a’s, ¢ Tope %ats &
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Capitulo 12

Predicao conforme

Em problemas de regressdo, é comum que se deseje mais do que uma predigdo pontual para a
varidvel resposta. Idealmente, gostariamos de quantificar a incerteza associada a cada predicao
por meio de um intervalo que contenha o valor real com alta probabilidade. Métodos estatisticos
classicos constroem tais intervalos sob suposi¢des paramétricas, como linearidade, normalidade
dos erros e homocedasticidade. No entanto, essas hipéteses raramente sdo verificadas na pratica,
0 que pode comprometer a validade dos intervalos obtidos.

A predicdo conforme (conformal prediction) é uma abordagem moderna que permite cons-
truir intervalos de predi¢do com garantias de cobertura validas para amostras finitas, sem fazer
suposigdes sobre a distribuicdo dos erros ou sobre a forma funcional da relagdo entre variaveis.
A tnica suposigdo necessdria para garantir a validade dos intervalos é que os dados sejam per-
mutéveis (exchangeable), isto é, que a distribui¢do conjunta das observagdes seja invariante a
ordem em que elas aparecem. Essa hipétese é mais fraca do que assumir que os dados sdo in-
dependentes e identicamente distribuidos (i.i.d.), embora na pratica os dois conceitos coincidam
em muitos contextos.

Ao longo destas notas, assumiremos que os dados sdo i.i.d. Essa hip6tese é mais restritiva do
que a de permutabilidade, mas é suficiente para garantir a validade dos métodos que apresenta-
remos, além de permitir uma apresentagdo mais direta e familiar do ponto de vista probabilistico.

12.1 O método split conformal

A principal ideia da predi¢do conforme é transformar qualquer medida heuristica de incerteza
fornecida por um modelo preditivo em um conjunto de predi¢do com garantias de validade finita.
A abordagem é agnostica ao tipo de modelo e ao tipo de problema (classificagdo ou regressao) e
se baseia apenas na suposi¢do de permutabilidade dos dados.

O método consiste em quatro etapas principais:

1. Treine um modelo preditivo utilizando uma parte dos dados, chamada de conjunto de
treinamento. Este modelo pode ser qualquer estimador ¢ que produza predi¢des pontuais.

2. Defina uma funcdo de escore (ou nido conformidade) s(x,y) € R, que quantifica o quanto
a predigdao do modelo ¢(x) discorda do valor observado y. Em problemas de regressao,

117
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uma escolha comum é s(x,y) = |y — §(x)|.

3. Utilize um conjunto de calibragdo com n pares (X, Y;) independentes para calcular os
escores s; = s(X;,Y;), i =1,...,n. A partir desses escores, defina o quantil ajustado:

@:i“f{q:iiﬂ{séq}zw(l_“)}.

n

4. Forme o conjunto de predi¢dao para uma nova entrada Xiest cOmo
C(Xiest) = {y € R: 5(Xest, y) < 4}
Esse conjunto C(Xiest) satisfaz a propriedade de validade marginal:
P (Yiest € C(Xtest)) > 1—u,

desde que os dados utilizados sejam i.i.d. (ou, mais geralmente, permutaveis).
A beleza do método estd em sua simplicidade e generalidade: qualquer modelo preditivo
pode ser utilizado, e ndo é necessario conhecer a distribui¢do dos erros. A tnica exigéncia é a

defini¢do de uma funcéo s(x,y) que reflita o grau de "ndo conformidade"entre x e y.

12.2 Conformalized Quantile Regression

O método de Conformalized Quantile Regression (CQR) é uma extensdo natural da predicdo con-
forme para problemas de regressdo com saidas continuas. Ele parte da ideia de ajustar direta-
mente intervalos de predigdo via regressdo quantilica, mas com uma etapa adicional de calibragao
que assegura validade marginal finita.

A ideia central é utilizar um modelo para estimar os quantis inferiores e superiores da varidvel
resposta condicionalmente a entrada. Por exemplo, um modelo de regressdo quantilica pode
fornecer estimativas f,»(x) e f;_,/2(x), de modo que

P(Y <fyp(x))ma/2 e P(Y>H _40(x)) ~a/2

No entanto, na prética, as estimativas desses quantis podem ser imprecisas. Para resolver
isso, 0 método CQR utiliza uma etapa de conformalizagdo, que ajusta dinamicamente o intervalo
com base em um conjunto de calibragao.

Etapas do método CQR

1. Treine um modelo de regressio quantilica para estimar os quantis #,/5(x) e f1_,/2(x) da
distribui¢do condicional Y | X = x.

2. Defina a func¢ado de escore como:
s(x,y) = max {f/2(x) =y, y — hia2(x)},

que mede a distancia entre a observacado y e o intervalo estimado.
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3. Com base no conjunto de calibracdo {(Xj, Y;)}"_,, calcule os escores s; = s(X;, Y;), e defina
o quantil ajustado:
4= Quantﬂ((w)(l_ﬂ)) (51,82, ---,5n) -

4. Para uma nova entrada x, o intervalo de predi¢do conforme é dado por:
C(x) = [fus2(x) =4, fioaya(x) +4].

Intuitivamente, o valor § corrige os possiveis erros do modelo quantilico, alargando ou estrei-

tando os intervalos de modo que o conjunto C(x) satisfaga:
P (Yiest € C(Xtest)) > 1 —a.

Esse método combina os beneficios da regressdo quantilica (que tenta capturar diretamente a
variabilidade condicional) com as garantias de validade fornecidas pela conformalizagdo, tornando-

se uma ferramenta extremamente pratica para predicao confiavel.

12.3 Particdo local via arvore de decisao

Uma limitacdo do método split conformal tradicional é que os intervalos obtidos tém largura
constante (ou seja, sdo simétricos e invariantes em relacdo a x), mesmo em situagdes em que a
variancia dos erros claramente depende da entrada. Para contornar esse problema, é possivel

construir intervalos locais, ajustando sua largura conforme a regido do espaco de entrada.

DATASET

SCORE

s: A xY =R
{(Xi,8:) biern

Regression Model
Ipa.rt Ic.ut

PARTITION CUTOFFS

‘/\/>\ - E

CART-induced partition Local cutoffs

Uma forma simples e eficaz de obter tal adaptagdo é por meio de uma drvore de decisdao

treinada sobre os residuos do modelo.
1. Primeiro, dividimos os dados em trés conjuntos: treino, calibragdo 1 e calibragdo 2.
2. Treinamos um modelo preditivo ¢(x) no conjunto de treino.

3. Com os dados de calibragdo 1, calculamos os residuos absolutos r; = |Y; — §(X;)|, e treina-

mos uma arvore de decisdo 7 com X; como entrada e r; como resposta.



120 CAPITULO 12. PREDICAO CONFORME

4. Em seguida, aplicamos a 4rvore nos dados de calibragdo 2. Para cada folha ¢ da &rvore 7T,
coletamos os residuos {r; : X; € ¢} e calculamos o quantil ajustado 4, correspondente ao
nivel 1 —a.

5. Finalmente, para um novo ponto x, identificamos a folha /(x) a qual ele pertence e cons-

truimos o intervalo de predigao local:
C(x) = [8(x) = do(x), §(x) + do(n)]-

Esse procedimento resulta em intervalos cuja largura varia com x, adaptando-se automati-
camente a regides com maior ou menor variabilidade condicional. Embora a validade marginal
global continue garantida, essa abordagem pode levar a melhorias substanciais na eficiéncia dos
intervalos, especialmente quando a incerteza depende fortemente da entrada.



Apéndice A
Revisao

Nesta segdo, faremos uma breve revisdo de alguns conceitos matematicos importantes.

A1 Algebra linear
Ao longo deste material, adotaremos a seguinte notagao:

¢ 1n: nimero de observacoes.
* p: nimero de variaveis preditoras.

* x;j: valor da j-ésima variavel na i-ésima observagédo, comi=1,...,nej=1,...,p.

Representamos os dados como uma matriz X € R"*?:

X1 X120 Xip

Xo1 X220t X2p
X =

Xnl Xn2 - Xnp

Cada linha de X é um vetor x; € IR, representando as varidveis da i-ésima observagao:

Xi1

X2
X =

xip

Também podemos considerar as colunas de X, escritas como x; € R":

xlj

x2j
X]' =

xn]-

Assim, a matriz X pode ser expressa de duas formas:
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X=(x1x2 - xp).

Também podemos considerar as linhas de X, escritas como x' € RP:

i_
x—<xi1 Xip v xip)'

Assim, a matriz X pode ser expressa de duas formas:

O simbolo T representa a transposta de vetores ou matrizes, por exemplo:

X11 X210 Xul
xT X12 X220 X2
xlp pr . e xnp

Denotamos a varidvel resposta (ou target) por y;, para a i-ésima observagdo. O vetor completo

de respostas é:

n

Y2
y:

Yn

O conjunto de dados observados é formado por pares {(x1, 1), (x2,¥2),---, (Xn, Yn) }-

Exercicio 19. Considere o conjunto de dados de saldrios, exemplificado abaixo:

year age maritl race education region jobclass health health_ins

0 2006 18 1.NeverMarried 1.White 1.<HS Grad 2. Middle Atlantic 1. Industrial 1. <=Good 2.No

1 2004 24 1.NeverMarried 1.White 4. College Grad 2.Middle Atlantic 2.Information 2.>=Very Good 2. No

2 2003 45 2. Married 1.White 3.Some College 2. Middle Atlantic 1. Industrial 1. <=Good 1. Yes

3 2003 43 2.Married 3. Asian 4. College Grad 2. Middle Atlantic 2. Information 2.>=Very Good 1. Yes

4 2005 50 4. Divorced 1. White 2.HSGrad 2. Middle Atlantic 2. Information 1. <=Good 1. Yes
2995 2008 44 2.Married 1.White 3.Some College 2. Middle Atlantic 1. Industrial 2. >==Very Good 1. Yes
2996 2007 30 2.Married 1. White 2.HS Grad 2. Middle Atlantic 1. Industrial 2. >=Very Good 2. No
2997 2005 27 2. Married 2. Black 1.<HSGrad 2. Middle Atlantic 1. Industrial 1. <=Good 2.No
2998 2005 27 1.NeverMarried 1.White 3.Some College 2.Middle Atlantic 1. Industrial 2. >=Very Good 1. Yes
2999 2009 55 5. Separated 1. White 2.HS Grad 2. Middle Atlantic 1. Industrial 1. <=Good 1. Yes

3000 rows = 11 columns

logwage
4.318063
4.255273
4.875061
5.041393

4.318063

5.041393
4.602060
4.193125
4477121

4.505150

Descreva quem é a matriz de dados X, quem é n, quem é p, quem é o vetor resposta y. Dica:

pegadinha.

wage
75.043154
70.476020
130.982177
154.685293

75.043154

154.685293
99.689464
66.229408
87.981033

90.481913

tem uma
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A.1.1 Multiplicagodes

Nessa se¢do, vamos estudar fatos importantes sobre multiplica¢gdes envolvendo matrizes. Para
mais detalhes, o leitor pode ver o excelente livro Trefethen and Bau (1997).

Matriz-vetor

Seja x;j a j-ésima coluna de X, um n-vetor. Entdo, a equagdo y = Xb pode ser reescrito como:
p
y=Xb=) xjb;. (A.1)
j=1

Essa equagdo pode ser representada esquematicamente da seguinte forma:

by
yl =2 x - xp} b:Z :b1[xl]-l-bz[xz}-l-'---i-bp[xp}'

by

Na equacdo acima, y é expresso como uma combinagdo linear das colunas de X. Desa forma,
podemos resumir essas diferentes descri¢des do produto matriz-vetor da seguinte forma. Como
matemadticos, estamos acostumados a interpretar a férmula Xb = y como uma afirmacdo de que
X age sobre b para produzir y. A forma acima, por outro lado, sugere a interpretacdo de que b
age sobre X para produzir y.

Matriz-Matriz

Para o produto matriz-matriz B = AC, cada coluna de B é uma combinagio linear das colunas de A.
Para demonstrar esse fato, comegamos com a férmula usual para produtos de matrizes. Se A é
uma matriz de dimensdo ¢ x n e C é de dimensdo n X p, entdo B serd de dimensdo ¢ x p, com
entradas definidas por

n
Bj =Y AyCyj. (A.2)
k=1

Aqui, Bjj, Aj e Cy;j séo elementos de B, A e C, respectivamente. Escrito em termos de colunas,
o produto é

By By --- Bn:| :A[Cl C, - Cul,
que implica em:
m
B = AC; = kz Cyj Ax- (A.3)
=1

Note que isso € s6 uma generalizagdo da multiplicacdo anterior, ja que B; = AC; e podemo
utilizar a formulacdo Matriz-Vetor da secdo anterior.

Um exemplo simples de um produto matriz-matriz é o produto externo. Este é o produto de
um vetor coluna u de dimensdo n com um vetor linha v de dimenséo p; o resultado é uma matriz

n x p de posto 1. O produto externo pode ser escrito como:
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iU - Oplq
[M] [Ul (% Un] = [’011/{ oou o-- vnu} =
Uil -+ Uply
As colunas sdo todas multiplos do mesmo vetor u e, da mesma forma, as linhas sdo todas
multiplos do mesmo vetor v.

A.1.2 Mudanga de base

Ao escrever o produto b = X!y, é importante ndo deixar que a notacio de matriz inversa

obscureca o que realmente estd acontecendo! Em vez de pensar em b como o resultado da

aplicacdo de X! a y, devemos entendé-lo como o vetor tnico que satisfaz a equagéo Xb = y.
Uma coisa importante de se notar é que como XX !y = y, entdo se z = X!y, temos que:

y=) zvx;
isto é, as coordenadas do vetor z = X~ !y indicam os coeficientes necessarios para escrever y na
base dada pelas colunas de X.

Aplicacoes

Com as ideias desenvolvidas nessa se¢do, somos capazes de desenvolver vérias transformagdes
de forma rdpida. Por exemplo, suponha que queremos uma matriz C cuja primeira coluna
é a primeira coluna de A duplicada, e as outras colunas sdo iguais as de A. Pela Secdo de
multiplicacdo Matriz-Matriz, queremos entdo que

Cp =2A; +0Ay +...04, = A]2,0,...,0]T

Ci=A; = A[0,0,...,1,...,0]T,

logo, C = AB onde B = diag(2,1,...,1).

Suponha agora que D é igual a M, porém com a linha 3 somada com a linha 1. Note que a
gente sO sabe trabalhar com operag¢des nas colunas, entdo a primeira coisa é transformas linhas
em colunas, fazendo AT, logo

Dy = Al + AT = AT[1,0,1,...,0]"

D; = AT = AT[0,0,...,1,...,0]".

Logo,
10,...,0
0,1,...,0
D=AT]110,...,0 | = ATM

0,0,...,1.
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Como queremos uma expressdo em termos de A, podemos fazer DT = MTA.
Ou seja, operagdes nas colunas de uma matriz sdo feitas a direita e opera¢des com linhas sdo
feitas a esquerda transposta.

a b
Exercicio 20. Considere: A = d> . Verifique que as multiplicagdes definidas acima de fato tem o
c

comportamento esperado descrito no texto.

a b
Exercicio 21. Considere: A = nE Calcule as multiplicacoes necessdrias para dobrar a coluna 1
c

somada com menos a coluna 2 e fazer linha 2 mais o dobro da linha 1.
Faga os cdlculos explicitos par amostrar que suas multiplicagdes estio corretas.

A.1.3 Produtos internos

Nos espagos de dimensdo 2 ou 3, definimos o comprimento de um vetor x (ou seja, a distancia
de sua extremidade até a origem) usando o teorema de Pitdgoras. Por exemplo, no espago R3,
temos:

x|l = \/x3 4+ x5 + x3.

Essa formula pode ser naturalmente estendida para qualquer dimensao 1, definindo a norma
de um vetor x € R"” como:

Ixll = /53 453+ 422
O termo norma é frequentemente usado como uma forma mais técnica ou refinada de se
referir ao comprimento de um vetor.
O produto interno que definimos para R" e C" satisfaz as seguintes propriedades fundamen-
tais:

1. Simetria (conjugada): (x,y) = (y, x); no caso real, isso equivale a simetria usual: (x,y) =
{y,x);

2. Linearidade: (ax + By, z) = a(x,z) + B(y, z), para todos os vetores X, y, z e escalares «, 3;
3. Nao-negatividade: (x,x) > 0 para todo x;
4. Nio-degenerescéncia: (x,x) = 0 se, e somente se, x = 0.

Seja V um espaco vetorial (real ou complexo). Um produto interno em V é uma fungdo que
associa a cada par de vetores x,y € V um escalar (x,y) que satisfaz as propriedades 1 a 4 acima.

No caso real, assumimos que (x,y) é sempre real. Jd em espagos complexos, o produto
interno pode assumir valores complexos.

Chamamos de espago com produto interno o par (V,(-,-)) formado por um espago vetorial V e
um produto interno definido sobre ele. Dado um produto interno, podemos definir a norma de

um vetor por:

]| = 4/ (%)
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Exemplo 3. Seja V = R" ou C". Jd vimos que o produto interno pode ser definido como

(x,y) =y'x=)_ T
k=1

Esse produto interno é conhecido como o produto interno padriao em R" ou C".

Ao longo do texto, usaremos a letra [F para representar tanto R quanto C. Assim, qualquer

afirmagdo sobre o espago [F" é valida para ambos os casos: R" e C".
Exemplo 4. Recordemos que, para uma matriz quadrada A, o trago é definido como a soma dos elementos

da diagonal principal:

n
tr(A) = Zak,k.
k=1

Seja My, xn 0 espaco das matrizes m X n. Definimos o produto interno de Frobenius por:

(A,B) = tr(B*A).

E possivel verificar que esse produto interno satisfaz as propriedades 1 a 4, ou seja, é de fato um produto
interno.
Observe que:

’CI‘(B*A) = ZAj/k@’
.k
0 que mostra que esse produto interno coincide com o produto interno padrdo em C™".

Exemplo 5. Seja V = L%([a, b]), o espaco das funcdes complexas mensurdveis ao quadrado integrdvel no
intervalo [a, b], ou seja:
b
L*([a,b]) = {f [a,b] = C ‘ / If(H)|?dt < oo}.

Definimos o produto interno entre duas funcoes f,g € L?([a,b]) por:

(f.8) = /abf(t)g(t)dt.

Esse produto interno satisfaz as propriedades fundamentais (conjugada simetria, linearidade, ndo-
negatividade e nio-degenerescéncia), tornando L?([a, b]) um espaco com produto interno.

A norma induzida por esse produto interno é:

= ([ roea)”

Exercicio 22. Mostre que nos exemplos acima, os produtos acima de fato satisfazem as propriedades de

produto-interno.

A seguir apresentamos alguns resultados importantes sobre produtos internos.
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Lema 1. Seja x um vetor em um espago com produto interno V. Entio x = 0 se, e somente se,

(x,y) =0 paratodoy € V. (1.1)

Corolario 1. Sejam x,y vetores em um espago com produto interno V. A igualdade x = y vale se, e
somente se,
(x,z) = (y,z) paratodoz € V.

Corolario 2. Sejam A, B : X — Y dois operadores lineares. Suponha que
(Ax,y) = (Bx,y) paratodox € Xey €Y.
Entdo, A = B.

Um dos resultados mais importantes com relagdo ao produto interno é a desigualdade de
Cauchy-Schwarz:

Teorema 7 (Desigualdade de Cauchy-Schwarz). Sejam x,y vetores em um espagco com produto in-
terno. Entdo:

|6 y) | < [Ix][ - llyll-

Demonstragio. Vamos apresentar uma demonstracdo que, embora ndo seja a mais curta, revela
bem a origem das ideias principais.

Comecemos com o caso real. Se y = 0, a desigualdade é trivial. Assim, podemos supor que
y # 0. Pelas propriedades do produto interno, para qualquer escalar ¢ temos:

0 < [lx—ty[* = (x — ty,x — ty) = [Ix|* — 2t(x,y) + £]}y|*

Essa desigualdade vale para todo t € IR, em particular para

0 que nos leva a:

X 2
,y

4

ou seja,
[ y) 1P < I - [yl

Portanto, obtemos a desigualdade desejada.
Para o caso complexo, uma das estratégias é considerar o mesmo argumento acima com ¢t
complexo (escolhendo, por exemplo, t = %), ou entdo proceder de forma andloga usando:

Ix — ty[|* = [IxI|* — £y, x) — E{x, y) + [ty ]|

A escolha de t = % minimiza a expressao acima, o que nos leva novamente a:

2
X,y
0< HXHZ— |<|| ||>2|

7
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ou seja,
[y | < I - [y ll-
Esse raciocinio mostra completamente a validade da desigualdade. A justificativa anterior

serviu apenas para motivar a escolha do valor especifico de t. O

Lema 2 (Desigualdade triangular). Para quaisquer vetores X,y em um espago com produto interno,

vale:
I+l < flx[| + Iyl
Demonstragio.
I+ yll* = (x+y,x+y)
= [IxII* + [ly[I* + (o y) + (%)
< [IxII* + [y [I* + 2/ ¢x y)l
< Il + [y 17 + 2l lyll = ClIxll =+ [y 1)
Tomando a raiz quadrada dos dois lados, obtemos a desigualdade desejada. O

Lema 3 (Identidades de polarizagio). Sejam x,y € V. E possivel recuperar o produto interno a partir
da norma usando as seguintes formulas:

® Se V é um espago com produto interno real, entdo:

1
(y) =7 (Ix+yll* = Ix =yl

® Se V é um espago com produto interno complexo, entdo:

1
=1 L alxtayl®
ae{l,—1,i,—i}

Exercicio 23. Prove todos os resultados anteriores que nio possuem provas.

A.1.4 Ortogonalidade

Definicdo 2. Dois vetores u e v sido chamados ortogonais (ou também perpendiculares) se
(u,v) = 0.

Usamos a notagio w L v para indicar que os vetores sio ortogonais.

Note que, se os vetores u e v forem ortogonais, entdo vale a seguinte identidade, conhecida

como identidade pitagorica:
|u+v|?=[lul>+|v]* seu Lv.

Definicdo 3. Dizemos que um vetor v é ortogonal a um subespago E se v for ortogonal a todos os vetores
w € E.

Analogamente, dizemos que dois subespacos E e F sdo ortogonais se todos os vetores de E sdo ortogonais
a todos os vetores de F, ou seja, (e, f) = 0paratodoe € Eef € F.
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O préoximo lema mostra como verificar se um vetor é ortogonal a um subespago gerado por

um conjunto finito de vetores.

Lema 4. Seja E o subespago gerado pelos vetores v1,Vy, ..., V,. Entdo, um vetor v é ortogonal a E se, e
somente se,

v.>lvwvy paratodok=1,2,...,r.

Definicao 4. Um sistema de vetores vq,Vy, ..., Vv, é dito ortogonal se quaisquer dois vetores distintos do
sistema forem ortogonais entre si, ou seja,

(vj,vk) =0 paraj#k.
Se, adicionalmente, ||vi|| = 1 para todo k, entdo o sistema é chamado de ortonormal.

Lema 5 (Identidade de Pitdgoras generalizada). Sejam vq,vo, ..., Vv, um sistema ortogonal. Entdo:

2

n n
Y avi|| =Y ol vl
= =

Essa férmula assume uma forma particularmente simples no caso de sistemas ortonormais,
pois nesse caso ||vi|| = 1 para todo k.

Definicao 5. Um sistema ortogonal (ou ortonormal) vi,vy, ..., Vy,, que também forma uma base, é cha-
mado de base ortogonal (ou base ortonormal).

E claro que, se dim V = n, entdo qualquer sistema ortogonal de # vetores nao nulos em V é
automaticamente uma base ortogonal.

Como vimos anteriormente, para encontrar as coordenadas de um vetor em uma base arbi-
traria, normalmente é necessério resolver um sistema linear. No entanto, no caso de uma base
ortogonal, isso pode ser feito de forma muito mais simples.

Suponha que vy, ..., v, seja uma base ortogonal, e que

n
X =q1V] +avy + - -+ ayvy, = Zucjvj.
j=1

Tomando o produto interno de ambos os lados com v;, obtemos:

n

<X,V1> = 206]'<V]',V1> = 0(1<V1,V1> = (XlHVle.
j=1

(j& que (vj,v1) = 0 para j # 1)

Portanto,
(x,v1)
vl

N =

De forma semelhante, multiplicando ambos os lados por vy, obtemos:

n

(x,vi) = Y aj(vj,vie) = age||viel %,
j=1
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entao
(x, vg)
[[v]2

K = (A4)

Para encontrar as coordenadas de um vetor em uma base ortogonal, ndo é necessario
resolver um sistema linear — as coordenadas sdao dadas diretamente pela férmula (A.4).

Retomando a defini¢do de projecdo ortogonal da geometria classica no plano (bidimensional),
podemos introduzir a seguinte definicdo. Seja E um subespaco de um espaco com produto
interno V.

Definigdo 6. Seja v um vetor. A sua projegio ortogonal sobre o subespago E, denotada por Pgv, é o vetor
w tal que:

1. w € E;
2.v—w_LE
Usaremos a notacdo w = Ppv para representar a projecao ortogonal de v sobre E.

Teorema 8. Seja w = Pgv a projegio ortogonal de v sobre o subespago E. Entdo, w é o ponto de E mais
proximo de v, ou seja, para todo x € E:

v —wi < [lv—x|.
Além disso, se existir x € E tal que
v —wi = [lv—x,
entdo x = w.
Demonstragio. Seja y = w — x. Entdo:
V-X=V-—-W+W-—-X=V—-—W+Yy.
Comov—w L Eey € E, segue que v—w L y. Assim, pelo teorema de Pitadgoras:
v =x|* = [lv = wl* + [[ylI* > [Iv — w|®.
A igualdade ocorre se, e somente se, ||y|| = 0, ou seja, y = 0, o que implica x = w. O

Proposigao 1. Sejam vi,vy,..., v, uma base ortogonal do subespago E. Entdo, a projegio ortogonal de
um vetor v sobre E é dada por:

" Vv,V
Prv = Zockvk, onde o = <H ”k2>
k=1 Vi
Em outras palavras:
.
&v:zﬁ“wﬂ% (A.5)

= vl
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Note que a férmula dos coeficientes «j coincide com a da equacao (A.4), isto é, essa formula

continua vélida mesmo se o sistema {v;} for apenas ortogonal (e ndo base), pois ela projeta v

sobre o subespago gerado pelos vetores.

Demonstragdo. Definimos:

! v, Vi
W= Z XpVy, com Q= <|| ! ||2>
k=1 Vi

Queremos mostrar que v — w | E. E é suficiente mostrar que
v—w vy paratodok=1,2,...,r

Para isso, calculamos:

(v—w,vg) = (v,vg) — (W, vg)

r
= V Vk Z(X Vi, Vk

]:1
= (v, vg) ]<V]/Vk>

j=1
Como o sistema {vy,...,v,} ¢é ortogonal, temos (v, vi) = 0 para j # k, e (v, vi) = [[v¢]|%
Logo:
(v —w,vi) = (v, vi) — || ve|l> = (v, vii) = (v, vi) = 0.

Portanto, v — w _L vi para todo k, e segue que v—w L E. Assim, w = Pgv.

O]

Observacao 2. Retomando a defini¢do de produto interno em C" e R", podemos deduzir da férmula (A.5)

que a matriz da projegdo ortogonal Pg sobre um subespago E C C" (ou IR") é dada por:

onde os vetores coluna vyi,va, . .., v, formam uma base ortogonal de E.

Ortogonalizacao de Gram-Schmidt

Suponha que temos um conjunto linearmente independente de vetores x1,x2,..., X,
de Gram-Schmidt constréi a partir desse conjunto um sistema ortogonal vy, vy, . ..

span(xy, Xy, ..., X,) = span(vy, vy, ..., Vy).
Além disso, para todo r < n, temos:
span(xy, ..., X;) = span(vy,..., V).
O algoritmo segue os seguintes passos:

1. Defina vy := x;. Seja E; := span(vy).

(A.6)

. O método

, vy, tal que:
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2. Defina

V) i=Xp — Pg,x0 = xp —
Seja E; := span(vy, v2). Como x; ¢ E;, temos v, # 0.
3. Defina
v3 = X3 — Pg,Xx3 = x3 —
Seja E3 := span(vy, va, v3).
4. Suponha que ja tenhamos construido vetores ortogonais vy, ..., v,, tais que
E, :=span(vy,...,v;) = span(Xy, ..., Xy).

Defina:

" X4,V
Virl = Xp41 — Z <|r+1’k>Vk~
k=1

Note que x,41 & E,, entdo v, 1 # 0.

Continuando esse processo até r = n, obtemos um sistema ortogonal de vetores vy, ..., v, tal
que:

span(vy,...,vy) = span(xy, ..., X,).

Exercicio 24. Aplique o método de Gram-Schmidit para os vetores {(1,1,1),(0,1,2),(1,0,2)}.

3.3. Complemento ortogonal. Decomposicio V = E @ E+

Definicdo 7. Seja E um subespago de um espago com produto interno V. O complemento ortogonal de E,
denotado por E*, é o conjunto de todos os vetores ortogonais a E:

Et:={xeV:xLE}

Se x,y L E, entdo qualquer combinacéo linear ax + By também estd em E* (consegue ver por
qué?). Logo, E* é um subespaco.
Pela definicdo de projecdo ortogonal, qualquer vetor v € V admite uma decomposigdo tinica
da forma:
v=vi+vy, comv;E€Eevy Ll E (ousea, vy € El).

Neste caso, temos v; = Pgv.
Essa afirmacdo pode ser escrita simbolicamente como:

V=E®E",

0 que expressa precisamente que todo vetor admite a decomposicdo tinica acima.
A proposigdo a seguir mostra uma propriedade fundamental do complemento ortogonal:

Proposicao 2. Seja E um subespago. Entdo:
(EH)*t =E.

Exercicio 25. Prove todos os resultados anteriores que nio possuem provas.
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A.2 Probabilidade

Um espago de probabilidade é uma tupla composta por trés elementos: o espaco amostral, o conjunto
de eventos e uma distribuicio de probabilidade:

¢ Espacgo amostral (): () é o conjunto de todos os eventos elementares ou resultados possiveis
de um experimento. Por exemplo, ao langar um dado, Q = {1,2,3,4,5,6}.

¢ Conjunto de eventos F: F é uma c-dlgebra, ou seja, um conjunto de subconjuntos de ()
que contém () e é fechado sob complementagdo e unido enumeravel (e, consequentemente,
também sob intersecdo enumeravel). Um exemplo de evento é: “o dado mostra um ntimero
impar”.

¢ Distribuicao de probabilidade IP: IP é uma fun¢do que associa a cada evento de F um
numero em [0,1], tal que P[Q)] = 1, P[@] = 0 e, para eventos mutuamente exclusivos
Aq,..., A, temos:

PlAU---UA,] = Y PlA].
i=1

A distribuicdo de probabilidade discreta associada ao lancamento de um dado justo pode ser
definida como P[A;] = 1/6 parai € {1,...,6}, onde A, é o evento “o dado mostra o valor i”.

A.2.1 Variaveis aleatoérias

Uma varidvel aleatéria X é uma fungdo X : (2 — R mensuréavel, ou seja, tal que para qualquer
intervalo I, o subconjunto {w € O : X(w) € I} pertence ao conjunto de eventos.

A fungio de massa de probabilidade de uma varidvel aleatéria discreta X é a funcdo x — P[X =
x].

Uma distribuicao é dita absolutamente continua quando possui uma fungio densidade de probabi-
lidade f associada, tal que, para todo a,b € R:

PMngH:AZQMx

Exemplo 6 (Binomial). Uma varidvel aleatéria X seque uma distribuicdo binomial B(n, p) com n € IN
ep€0,1]se, parak € {0,1,...,n},

Pix =K = ()= p)

Exemplo 7 (Uniforme). Uma varidvel aleatéria X segue uma distribuicdo uniforme U (a, b) no intervalo
(a,b) se,
%ﬂ paraa < x <b

fx)=1"

0 caso contrdrio.
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Exemplo 8 (Normal). Uma varidvel aleatéria X segue uma distribuicio normal N(u,0?) com yu € R e
o > 0 se sua densidade for dada por:

_ 1 (x —p)?
flx) = 2702 P (_M> '

A distribuiciio normal padrio é N(0,1), com média zero e varidncia unitdria.

Exemplo 9 (Laplace). Uma varidvel aleatéria X segue uma distribuigdo de Laplace com pardmetro de

localizagio y € R e pardmetro de escala b > 0 se sua densidade for:

) = gyexe (51,

A.2.2 Probabilidade condicional e independéncia

A probabilidade condicional do evento A dado o evento B é definida como a razdo entre a
probabilidade da interse¢do A N B e a probabilidade de B, desde que IP[B] # 0:

P[A N B]

PA|B] = 5

Dois eventos A e B sdo ditos independentes quando a probabilidade conjunta IP[A N B] pode ser
fatorada como o produto P[A]PP[B]:

P[A N B] = P|A]P[B].

De forma equivalente, a independéncia entre A e B pode ser expressa afirmando que P[A | B] =
P[A], sempre que IP[B] # 0.

Além disso, uma sequéncia de variaveis aleatérias é dita i.i.d. (independentes e identicamente
distribuidas) quando todas as varidveis da sequéncia sio mutuamente independentes e seguem

a mesma distribuigdo de probabilidade.

A.2.3 Algumas férmulas importantes

IP[AUB] =P[A] +P[B] —P[AN B] (regra da soma)

P|JAi| <) P[A] (desigualdade da unido)
i=1 i=1

P[A | B] = Hw (férmula de Bayes)

(regra da cadeia)

Exercicio 26. Prove os resultados acima.
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A.2.4 Esperanca e desigualdade de Markov

A esperanca ou valor esperado de uma varidvel aleatéria X é denotada por E[X] e, no caso
discreto, é definida como
E[X] =) xP[X =x]. (C.9)
X

No caso continuo, quando X possui uma func¢do densidade de probabilidade f(x), a esperanga é
dada por

E[X] = /joxf(x) dx.

Além disso, dado uma fungdo qualquer g, temos que:

E[g(X)] = / g(x) f(x) dx.

—00

Uma propriedade fundamental da esperanca é sua linearidade. Isto é, para quaisquer varié-
veis aleatdrias X e Y e constantes a,b € R, temos:

E[aX + bY] = aE[X] + bE[Y]. (C.10)

A seguir, apresentamos um limite superior simples para uma varidvel aleatéria ndo-negativa

em fungdo de sua esperanga, conhecido como a Desigualdade de Markov.

Teorema 9 (Desigualdade de Markov). Seja X uma varidvel aleatéria ndo-negativa (X > 0 quase
certamente) com valor esperado [E[X] < oo. Entdo, para todo t > 0, temos:

(s < B

Exercicio 27. Prove as desigualdades de Markov.

A.2.,5 Variancia e a desigualdade de Chebyshev

A variancia de uma variavel aleatéria X é denotada por Var[X] e definida como
Var[X] = E[(X — E[X])?].

O desvio padrdo de X é denotado por ox e definido como

ox = 4/ Var[X].

Para qualquer variavel aleatéria X e qualquer constante 2 € IR, as seguintes propriedades
bésicas sdo vélidas:
Var[X] = E[X?] — E[X]?,

Var[aX] = a® Var[X].
Além disso, se X e Y forem independentes, entdo
Var[X + Y] = Var[X] + Var[Y].

Exercicio 28. Prove as identidade acima.
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A seguinte desigualdade, conhecida como Desigualdade de Chebyshev, fornece um limite para
a probabilidade de uma variavel aleatéria se desviar de sua esperanga em fungdo do seu desvio
padréao.

Teorema 10 (Desigualdade de Chebyshev). Seja X uma varidvel aleatéria com valor esperado y =
E[X] e varidncia finita Var(X) = 0. Entdo, para todo & > 0, vale:

N

(o

P(|X —p|>¢) < =z

Exercicio 29. Prove a desigualdade de Chebyshev.

A.2.6 Covariancia

A covariancia entre duas varidveis aleatorias X e Y é denotada por Cov(X,Y) e definida por
Cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Exercicio 30. Prove que
Cov(X,Y) =E[XY]-E[X]E[Y].

Dizemos que X e Y sdo ndo correlacionadas quando Cov(X,Y) = 0. Se X e Y forem indepen-

dentes, entdo certamente sdo ndo correlacionadas, mas a reciproca nem sempre é verdadeira.

Exercicio 31. Seja X uniforme no intervalo [—1,1] e seja Y = X2. Mostre que Cov (X,Y) = 0 mas X, Y
ndo sio independentes.

Observagado 3. Considere uma varidvel aleatéria continua X centrada em zero, ou seja, E[X] = 0, com
densidade de probabilidade par e definida em um intervalo do tipo (—a,a), com a > 0. Seja Y = g(X)
para uma fungio g. A questio é: para quais fungdes g(X) temos Cov(X, g(X)) = 0?
Sabemos que
Cov(X, g(X)) = E[Xg(X)] ~ E[X]E[g(X)].

Como E[X] = 0, segue que Cov(X, g(X)) = E[Xg(X)]. Denotando a densidade de X por f(x), temos

Cov(X,g(X)) = /aa xg(x)f(x)dx.

Uma maneira de garantir que Cov(X,g(X)) = 0 ¢ exigir que g(x) seja uma fungio par. Assim,
xg(x)f(x) serd uma fungio impar e a integral em (—a,a) se anulard, ou seja,

/: xg(x)f(x)dx = 0.

Portanto, Cov (X, f(X)) = 0ecomo Y = g(X), teremos que ambas sio dependentes.
Dessa forma, podemos concluir que a distribuicdo precisa de X ndo afeta a condigdo, desde que p(x)
seja simétrica em torno da origem. Qualquer funcio par f(-) satisfard Cov(X, f(X)) = 0.

A covaridncia é uma forma bilinear simétrica e semi-definida positiva, com as seguintes pro-

priedades:
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e Simetria: Cov(X,Y) = Cov(Y, X) para quaisquer varidveis X e Y.

e Bilinearidade: Cov(X + X', Y) = Cov(X,Y) + Cov(X',Y) e Cov(aX,Y) = aCov(X,Y) para
qualquer 2 € R.

* Semi-definida positiva: Cov(X, X) = Var[X] > 0 para qualquer variével X.

Além disso, vale a desigualdade de Cauchy-Schwarz, que afirma que para varidveis X e Y

|Cov(X,Y)| < 4/Var[X] Var[Y].

Perceba a semelhanca do resultado acima com a desigualdade de Cauchy-Schwarz!

com variancia finita,

Exercicio 32. Prove os resultados acima.

A matriz de covaridncia de um vetor de variaveis aleatérias X = (X, ..., Xp) é a matriz em
R"*" denotada por C(X) e definida por

C(X) = E [(X—EX))(X~E[X))"|.

Portanto, C(X) é a matriz cujos elementos sdo Cov(X;, X;). Além disso, é imediato mostrar
que
C(X) = E[XX"] —E[X]E[X]".

A.2.7 Teoremas assintoticos

Em muitas aplica¢des de probabilidade e estatistica, estamos interessados no comportamento de
sequéncias de varidveis aleatérias quando o nimero de observagdes tende ao infinito. Os teoremas
assintéticos fornecem resultados fundamentais que descrevem como certos estimadores ou somas
de varidveis aleatérias se comportam no limite, ou seja, quando o tamanho da amostra n cresce
indefinidamente.

Teorema 11 (Lei Fraca dos Grandes Numeros). Seja (X, )ueN uma sequéncia de varidveis aleatorias
independentes, todas com a mesma esperanca y e varidncia o> < oo. Definindo a média amostral por

entdo, para qualquer € > 0,
lim P (| X, —p| >¢€) =0.

n—oo

Exercicio 33. Prove a Lei Fraca dos Grandes niimeros utilizando a desigualdade de Chebyshev.

Teorema 12 (Teorema Central do Limite). Seja Xj, ..., X, uma sequéncia de varidveis aleatérias i.i.d.
com esperanga y e desvio padrio . Definimos a média amostral como
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e a varidncia da média como (r% = o2/n. Entdo, a varidvel padronizada (X, — 1)/ oy converge em

distribuicdo para uma normal padrido N(0,1). Mais precisamente, para todo t € R,

X _ t
lim P (X" K < t> :/ 1 e~ /24x.
n—oo 0'n —00 A /27-[

Observacao 4. Apesar dos teoremas assintdticos, como a Lei Fraca dos Grandes Niimeros e o Teorema

Central do Limite, serem fundamentais para entender o comportamento de sequéncias de varidveis aleatdrias
quando n — oo, na prdtica, em aprendizado de mdquina, o niimero de amostras n nem sempre é grande o
suficiente para que esses resultados sejam aplicdveis com seguranga. Por outro lado, desigualdades como as
de Markov e Chebyshev fornecem limites vdlidos para qualquer valor finito de n. Essas desigualdades sdo
exemplos de desiqualdades de concentragdo, que nos permitem controlar a probabilidade de desvios em torno
da média de uma varidvel aleatéria. A teoria de concentragio serd crucial em topicos futuros, pois fornece
ferramentas importantes para analisar o desempenho de algoritmos em cendrios onde o regime assintético
ndo pode ser garantido.

A.2.8 Funcao geradora de momentos

A esperanga E[X?] é chamada de p-ésimo momento da varidvel aleatéria X. A fungio geradora de
momentos de uma varidvel aleatéria X é uma ferramenta importante, pois permite obter seus di-
ferentes momentos por meio de diferenciagdo em zero. Essa fungdo é crucial tanto para descrever
a distribuicdo de X quanto para analisar suas propriedades.

A fungdo geradora de momentos de uma varidvel aleatéria X é a fungdo My : t — E[e'X],
definida para os valores de t € R tais que a expectativa exista (seja finita).

Exercicio 34. Mostre que se Mx for diferencidvel em zero, entdo o p-ésimo momento de X é dado por
E[x?] = M{"(0).

Exercicio 35. Seja X uma varidvel aleatéria com distribuicdo normal padrdo, ou seja, X ~ N(0,1).
Mostre que a fungio geradora de momentos de X é dada por por:
2

Mx(t) =e2.
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Apéndice C
Ferramentas computacionais

C1l Git

O Git é um sistema de controle de versdo distribuido amplamente utilizado no desenvolvimento
de software. Ele permite que diversos desenvolvedores trabalhem simultaneamente em um pro-
jeto, acompanhando as alteragdes feitas no c6digo, revertendo mudangas, criando ramifica¢des
(branches) e colaborando de forma eficiente.

Com o Git, o histérico de altera¢des de um projeto é armazenado localmente, o que possibilita
o trabalho off-line e oferece grande flexibilidade na manipulagdo de versodes.

Principais comandos do Git
A seguir, apresentamos os comandos mais basicos e tteis do Git:
® git init
Inicializa um novo repositério Git em um diretério.

e git clone <URL>
Clona um repositério remoto (por exemplo, do GitHub) para a maquina local.

® git status

Exibe o estado atual do repositério: arquivos modificados, ndo rastreados etc.

® git add <arquivo>

Adiciona um ou mais arquivos ao staging area, preparando-os para o commit.

® git commit -m "mensagem"

Registra as mudangas preparadas com uma mensagem descritiva.

* git log
Mostra o histérico de commits do repositorio.

o git diff
Exibe as diferencas entre arquivos modificados e o tltimo commit.
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git branch
Lista todas as branches do projeto.

git checkout <branch>

Alterna para outra branch existente.

git merge <branch>
Mescla o contetiddo de uma branch a branch atual.

git pull
Atualiza o repositério local com as alteragdes do repositério remoto.

git push
Envia os commits locais para o repositério remoto.

Exemplo de fluxo basico

git
git
git
git
git

init

add arquivo.txt

commit -m "Adiciona arquivo inicial"

remote add origin https://github.com/usuario/repositorio.git

push -u origin main

C.2 Python

C.3 Poetry
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